
AD-RI69 738 EVALUATIONS OF SOFTNRRE TECHNOLOGIES: TESTING CLEAOON U
RND NETRICSCU) NRRYLAND UNIV COLLEGE PRK DEPT OF
CONPUTER SCIENCE R N SELBY NRY 85 TR-150

UNCLRSSIFIED RFOSR-TR-86-0279 F49628-80-C-9081 F/G 9/2L

Iflllllllllll
EIIIIIIIIIIIII
EIIIIIIIIIIIIu
IIIIEIIIIEIII
IIIIEIIIIIEIIK
llllllIIhhllll

N% Li

,,".*..":,,-

tI
I

3,1,

. . ..
S,, . .

3 6

%

.h

* ." -"

k%I • 5 1 .4 11111 _LII 28 11 S. ,

N lr'R n '(['tb
.i . " .

11111 140

I,',..-,,...," .

"-. -.A -,

00 AFOSR-TR. 86-0279

00_ _ _ _ _ _ _ _ _ _ _ _

• 0 0 a-

_- -.' . .

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

Approved for public release I
distribution unlimited.

UNIVERSITY OF MARYLAND
0=)- COLLEGE PARK, MARYLAND

S204 Approved for pul lit reloase I
I]] a,, ~~distribution Lnlimited. ...)-"'....

D 66 1 0 134'' 1

° " "' " • , " " " " '," i'-" ' " " " n" "'- ' "" " .

V.

Technical Report-1
5 0 0 a

Eval• uaiosay 1985
EValuations

of Software Tech-lologies. :Testing,
CLEA.NROOM,'

and Metrics

Richard W. Selby, Jr.
Department

of Computer ScienceUniversity of Maryland
College Park

*i
. ,

. .. di

DiD

i:'
Chief T~ehnieai Informatio Division

.

i- r
Dssrton SheUiedtyo the Faculty of the Graduate School

.

ofteUivriyof
Mary land in Partial fulfillment

"

Ot th eqTi~ rt h e re of

DOctor of PhiLosophy
In

Research supported in
tare by eact of

rfd n Ga Sy toe h University
of Maryland

C pute ScoolProidd ~ea: b tefacilities
of "MASA/Goddard

Space Plight Center

and he C r p tt
e u ie r.tj l fu f l m n

ts for th dugrport

Center
e r

of Maryland

Ns

"777 77.7 7

ABSTRACT

Title of Dissertation: Evaluations of Software Technologies: Testing,
CLEAIN-ROOM, and Metrics

Richard Wayne Selby, Jr., Doctor of Philosophy, 1985

Dissertation directed by: Victor R. BasIll
Professor and Chairman

Department of Computer Science

The evaluation of software technologies suffers because of the lack of un-

titative assessment of their effect on software development and modlflcat'mo. A

seven-step approach for quantitatively evaluating software technologies couples

software methodology evaluation with software measurement. The approach Is

applied In-depth In°v -hnhowlnthr-e -fieas. 1) Software Testing Strategies: A

74-subject study, Including 32 professional programmers and 42 advanced

university students, compared code reading, functional testing, and structural

testing In a fractional factorial design. 2) Cleanroom Software Development:

Fifteen three-person teams separately built a 1200-11ne message system to com-

pare Cleanroom software development (in which software Is developed complete- I

3
ly off-line) with a more traditional approach. 3) Characterlstlc Software Nfetrc

Sets: In the NASA S.E.L. production environment., a study of 65 candidate pro-

duct and process measures of 052 modules from six (51,000 - 112.000 line) pro-

jects yielded a characteristlc set of software cst,'qua(llty nit rlcs.

The major results are the following. 1)"The approach described for oua ti-

')des
tatI'vely evaluating software technologies hazs heen denionstrated and effect iv n

or

. .:...•...... :...,:,:. .:....,....: . .:.., :..;.....-,; ::.. :..

a variety of problem domains. With the professionals, code reading detected

more software faults and had a higher fault detection rate than did functional

or structural testlng1 whlle -PunctIonal testing detected more faults- than did

structural testing, but functional and structural testing were not different In

fault detection rate. a) With the students, the t-ree techniques were not

different In the number of faults detected or In the fault detection rate, e.Xept

that structural testing detected fewer faults than did the others T--ne study

phase. ') Code reading detected more Interface faults and functional testing

detected more control faults than did the other methods. 5) Most developers

using the Cleanroom software development approach were able to build systems

completely off-line. 6) The Cleanroom teams' products met system requirements

more completely and succeeded on more operational test cases than did those

developed wlth a traditional approach.7)n approach described for calculat-

Ing a characteristic metric set yielded the set r the NASA S.E.L. environment

{source lines, design effort, number of Input/output parameters, fault correction

effort per executable statement, code effort, number of versions}.

.

ACKNOVLEDGEMENT

I greatly appreciate the opportunity to have worked with people that are

shaping the frontier of the software engineering field. I wish to thank Larry S.

Davis, John D. Gannon, Harlan D. Mills, and Kent L. Norman for serving on

my committee and providing several Insightful comments and suggestions. The

Ideas of code reading by stepwise abstraction and Cleanroom software develop-

ment are those of Harlan D. Mills, to whom I am grateful. I wish to thank F.

Terry Baker for his essential role In the collection or a major portion of the data

presented. The assistance provided by Frank E. MIcGarry and Jerry Page was

crucial to the success of my analysis In the NASA Software Engineering Labora-

tory. I want to thank John D. Gannon for his refreshing attitude and valuable

support. The members of our research group and several fellow graduate stu-

dents have offered encouragement and helpful criticisms on this work. I also

wish to thank Michael E. Fagan. David H. Hutchens, and Marv n V. Zelkowltz

for several enlightening discussions. A special appreciation goes to my advisor,

Victor R. BasiI, whose motivation, leadership. and spirit made thls work possl-

ble.

This research was supported In part by the Air Forc Ot''o k< oi t..

Research Contract NFOSR-F49620-O-C-001 and the National .- ,eron"ut 7

Space Administration Grant NSG-5123 to the Unlverslty ot" \I: .' 'ryu , -

puter support provided In part by the fac"Il'es o S GU)t S.c'

Center and the Computer Siolence Center at the [;v,- r4' N ,

"'11

V -

Table of Contents
C,'

1 introduction.......................

2 A Quantitative Approach for Evaluating Software Technologies 4

2.1 Methodology for Data Collection and Analysis 5

2.2 Coupling Goals With Analysis Methods ... 7

2.2.1 Forms of Result Statements ... 8

2.3 Analysis Classification Scheme .. 10

2.4 Classificatlon of Analyses of Software ... 13

2.4.1 Blocked Subject-Project Studies ... 13

2.4.2 Replicated Project Studies ... 16

2.4.3 lultl-Project Variation Studies ... 20

2.4.4 Single Project Studies ... 22

3 Evaluation of Software Technologies: Problem Selection 24

3.1 Selection C riteria ... 24

3.2 A-nalysls Selection .. 28

3.2.1 Software Testing Strategy Comparison 27

3.2.2 Cleanroom Development Approach Analysis 28

3.2.3 Characteristic Metric Set Study .. 29

3.3 Methodology Application ... 30

4 Evaluation of Software Technologies: Analysis and Results 31

4.1 Software Testing Strategy Comparison ... 31

4.1.1 Testing Techniques .. 32

4.1.1.1 Investigation Goals .. 33

4.1.2 Empirical Study ... 35

4.1.2.1 Iterative Experimentation ... 36

4.1.2.2 Subject and Program/Fault Selection 36

4.1.2.2.1 S ubjects 37

4.1.2.2.2 P rogram s .. 39

4.1.2.2.3 F aults .. 41

4.1.2.2.3.1 Fault Origin 41

4.1.2.2.3.2 Fault ClousItk]-tlon 42

4.1.2.2.3.3 Fault Dscr.p.',n............... 14

4.1.2.3 Experimental Design ... -7

-4.1.2.3.1 Independent and Deprnde nt V,,rlabiPS
... -is-

S..

4.1.2.3.2 Analysls of Variance Model 49

4.1.2.4 Experimental Operation ... 52

4.1.3 D ata A nalysis .. 55

4.1.3.1 Fault Detection Effectiveness 55
4.1.3.1.1 Data Distributions 56 d.

4.1.3.1.2 Number of Faults Detected 59
4.1.3.1.3 Percentage of Faults Detected 60

4.1.3.1.4 Dependence on Software Type 61.

4.1.3.1.5 Observable vs. Observed Faults 62

4.1.3.1.6 Dependence on Program Coverage 63

4.1.3.1.7 Dependence on Programmer Expertise
,,.. ,. ,,.. 64

4.1.3.1.8 Accuracy of Self-Estimates 64

4.1.3.1.9 Dependence on Interactions 65

4.1.3.1.10 Summary of Fault Detection
Effectiveness .. 65

4.1.3.2 Fault Detection Cost ... 66

4.1.3.2.1 Data Distributions 67

4.1.3.2.2 Fault Detection Rate and Total Time -' -
.. 70

4.1.3.2.3 Dependence on Software Type 71

4.1.3.2.4 Com puter Costs 72

4.1.3.2.5 Dependence on Programmer Expertise

............. 73

4.1.3.2.6 Dependence on Interactions 74

4.1.3.2.7 Relationships Between Fault Detection
Effectiveness and Cost 74

4.1.3.2.8 Summary of Fault Detection Cost 75

4.1.3.3 Characterization of Faults Detected 76

4.1.3.3.1 Omission vs. Commission ClasifIcatlon
....... ,,................,. . 7 7

4.1.3.3.2 Slx-Part Fault Classification 77

4.1.3.3.3 Observable Fault Classificatlon 78

4.1.3.3.4 Summary of Characterization of Faults

D etected ... 70

4 .1.4 C oncluslons

-4.2 Cleanroom Development Approach Analysis :3

4.2.1 Cleanroom Software Development lethod $3

-4.2.1.1 InvesruL-atlon G oals ..

-4.2.2 Em pirical Study U.ir' Cleanreom ..

iv a

..

- .. .

4.2.2.1 Case Study Description ... 87

4.2.2.2 Operational Testing of Projects 89

4.2.3 Data Analysis and Interpretation ... 90

4.2.3.1 Characterization of the Effect on the Product
D eveloped .. 91

4.2.3.1.1 Operational System Properties 91

4.2.3.1.2 Static System Properties 95

4.2.3.1.3 Contribution of Programmer Back-
ground ... 97'

4.2.3.1.4 Summary of the Effect on the Product
Developed ... 98

4.2.3.2 Characterization of the Effect on the Development

Process .. 98

4.2.3.2.1 Summary of the Effect on the Develop-

m ent Process .. 103

4.2.3.3 Characterization of the Effect on the Developers

.. 10 3

4.2.3.3.1 Summary of the Effect on the Develop-

ers ... 107

4.2.3.4 Distinction Among Teams ... 107

4.2.4 C onclusions ... 109
4.3 Characteristic M etric Set Study ... 112

4.3.1 Characteristic Software M etric Sets .. 113

4.3.1.1 Investigation G oals .. 114

4.3.2 Em plrlcal Study .. 115

4.3.2.1 SEL Environm ent .. 115

4.3.2.2 Effort, Change, and Fault Data 116

4.3.3 Data Analysis ... 117

4.3.3.1 Approach for Set Calculation 117

4.3.3.1.1 An Alternate Approach 118

4.3.3.2 Application In the SEL Environment 119 -

4.3.3.3 Use as a M anagemeni Tool 122

4.3.3.3.1 Conditional Probabilities from Histori-

cal D ata .. 123
4.3.3.3.2 Data Interpretatlon 126

4.3.4 C oncluslons .. . 129

5 C oncl s ons 130

3.1 0verall Results from the Software Technology ..aliitlons 131

5.2 P ro b lem A reas .. 1 32

5.3 O veraUl C onclusions .. 13-4

. :- i -.---. ..- .- .- -. .. . - - -. --:-. -_ - . . .

-~~r V6* .7 1- 6. .. b

8 Appendices .. 135

6.1 Appendix A. Overview of Sampling and Statistical Test Applica-
tion..135

6.2 Appendix B. Programs Used In the Testing Strategy Comparison
...13713

6.2.1 Appendix B.1. The Specifications for the Programs............. 137
8.2.2 Appendix B.2. The Source Code ror the Programs 143

0.3 Appendix C. Operational Testing Procedure Applied In the
Cleanroorn Study... 180
6.3.1 Test Data Selection.. 180

6.3.2 Testing Process and Failure Observation......................... 188
8.3.3 Failure Counting... 187

7 References... 189

List of Figures

Figure 1. Goal/question/metric paradigm.

Figure 2. Categorization of analyses of software.

Figure 3. Three analyses selected.

Figure 4. Capabilities of the testing methods.

Figure 5. Structure of goals/subgoals/questions for testing experiment.

Flgure 6. Expertise levels of subjects.

Figure 7. The programs tested.

Figure 8. Programs tested In each phase of the analysis.

Figure 9. Distribution of faults In the programs.

FIgure 10. Fault classificatlon and manifestation.

Flgure 11. Fractional Factorial Design.

Figure 12. Overall summary of detection effectiveness data.

Figure 13. Distribution of the number of faults detected broken down by phase.

Figure 14. Overall summary for number or faults detected.

Figure 15. Overall summary of fault detection cost data.

Figure 16. DIstribution of the fault detection rate (#,aults detected per hour)

broken down by phase.

Flqurf 17. Overall summary for fault detection rate (4 faults (detecteul per

hour).

....................................... '

Figure 19. Characterization of the faults observable, but not reported.

Figure 20. Framework of goals and questions for Cleanroom development ap-

proach analysis.

Figure 21. Subjects' professional experience In years. .

Figure 22. System statistics.

Figure 23. Requirement conformance of the systems.

Figure 24. Percentage of successful test cases during operational testing

(without duplicate failures).

Figure 25. Breakdown of responses to the attitude survey question, "Did you

feel that you and your team members effectively used off-line review

techniques In testing your project?".

Figure 25. Connect time In hours during project development.

Figure 27. Number of system releases.

Figure 28. Breakdown of responses to the attitude survey question, "Did you

miss the satisfaction of executing your own programs?".

Figure 29. Relationship of program size vs. missing program execution.

Figure 30. Breakdown of responses to the attitude survey question. "How was

your design and coding style affected by not being able to test an(d de-

bug,?"'.

Figure 31. Breakdown of responses to the attitude survey question. "\Vould you

use Cleanroom agaln'".

Flure 32. "Summary of me-sure avera es an,! sblnltlcance levels.

,_zre :.3). Fram::ework 4 o:n, s and q;est cV-n5 *"-r

viii

Figure 34. List of measures examined In the SEL environment.

Figure 35. Conditional probabilities based on SEL data: upper quartlles of

dependent variables.

Figure 36. Conditional probabilities based on SEL data: lower quartIles of

dependent variables.

Figure 37. Regular expression of logical Inputs to the system In a single user

session.

Figure 38. Schedule of Deliveries for a Sample Team.

Figure 39. Two Testing Schedules for a Sample Team.

Figure 40. Arc Frequency Assignment as a Result of Stratification.

Figure 41. Failure Counting Issues.

i

°...

°.5

Ib.Ix

3'

-.o" -

" ° """- .". "' -""" - """-.-.-.-. ..". . ..-. . ..''.,-'' ,' " " -.- '" "-..' "'%'% -" ."°"q' "-"." ' b
" '

-' '

1. Introduction

Computer science Is both a theoretical science and a practical science. A

lot of work has been done studying theoretical aspects of computer science:

determining optimum algorithms, formulating mathematical models, proving

theorems, etc. However, little work has been done studying the practice of com-

puter science - studying how the discipline of computer science Is actually ap-

plied.

There are several motivations for studying the practice of computer scl-

ence. Programs In practice are different than those In theory. The programs

developed, maintained, and managed In practice tend to be large, unwieldy, and

complex. Almost everyone associated with computer science has had an experl-

ence where he/she has said, "Wait a minute, that dld not turn out the way that

I thought It would!". Although there are insights Into how the theory applies In

practice, these Insights have not always been correct. In the practice of corn-

puter science, few objects are viewed In Isolation; there Is a complex Interaction

among the programmer, methodology-tool-technique, and computer. For exam-

ple. consider the area of software testing. The process of software testing has

existed a long time. Testing is the most common way to attempt to show that

a program does what It is intended to do. Several theoretical results has been

published in the area of software testlng. Yet, what is the best way to test a

program - use a functional testlng approach, a structural approach, a

nonexecutlon-based readIng process? The challenge Is that the best approach is

1!

not known. How Is such a question answered?

The overall objective of this dissertation Is to examine factors that contri-

bute to software development and maintenance. The Investigations undertaken

adhere to two major themes. First, the factors studied should have a high po- it

tentlal benefit to the process of attaining aspects of software quality: require-

ment conformance, operational reliability, and modifiable source code. Second,

the Investigations should capture the effect of the factors precisely by character-

Izing and evaluating them quantitatively. .

The three analyses presented are studies of 1) software testing, 2) Clean-

room software development (which will be described later), and 3) software

metrics. The three studies are Intended to advance the understanding of 1) the

contribution of various software testIng strategies to the software development

process and to one another; 2) the relationship between Introducing discipline

Into the development process (as In the Cleanroom approach) and several as-

pects of product quality (requirement conformance, operational reliability, and

modifiable source code); and 3) the use of software metrics to characterize soft-

ware environments and to predict project outcome.

The evaluatlon of software technologies has suffered because of the lack of

quantitative assessment of their effect on software development and

modificatlon. ThIs dIssertation describes a seven-step analysis methodology that

Is Intended to structure the process of evaluating software technologies. The

analysis methodology provides a paradigm that Is applicable In a varletv o-

problem domains and Is used In-depth In the three studies presented.

2)

- . . .]

Section 2 describes an approach for quantitatively evaluating software tech-

nologles and classifies previous studies of software. Section 3 discusses the selec-

tlon of the three investigations conducted. The problem formulation, data

analysis, and results from the three studies are presented In Section 4. Section

5 summarizes the conclusions from this work.

3.

2 ""

-. . ,'. .
.°

2. A Quantitative Approach for Evaluating Software Technologies

Several techniques and Ideas have been proposed to improve the software

development process and the delivered product. There is little hard evidence,

however, of which methods actually contribute to quality In software develop-

ment and modification. As a consequence, many management decisions and

research Issues are resolved by Inexact means and seasoned Judgment, without

the support of appropriate data and analysis. As the software field emerges, the

need for understanding the important factors In software production continues

to grow. The evaluation of software technologies suffers because of the lack of

quantitative assessment of their effect on software development and

modification.

This dissertation supports the philosophy or coupling methodology with

measurement. That Is, tieing the processes of software methodology use and

evaluation together with software measurement. The assessment of factors that

affect software development and modification Is then grounded in appropriate

measurement, data analysis, and result Interpretation. This section describes a

quantitatively based approach to evaluating software technologies. The formu-

latlon of problem statements In terms of goal/question hierarchies Is linked with

measurable attributes and quantitative analysis methods. These frameworks of

goals and questions are Intended to outline the potential effect a technology has

on aspects or software cost and quality. Problem formulation linkcd with the

collection and analysls of appropriate data Is pivotal to any manag-ement. con-

4

trol, or quality improvement process.

The analysis methodology described provides a framework for data collec-
A.

'p.
tion, analysis, and quantitative evaluation of software technologies. The para-

digm identifies the aspects of, a well-run analysis and is Intended to be applied

In different types of problem analysis from a variety of problem domains. The

methodology presented serves not only as a problem formulation and analysis

paradigm, but also suggests a scheme to characterize analyses of software devel-

opment and modification. The use of the paradigm highlights several problem

areas of data collection and analysis In software research and management.

The approach described for quantitative evaluation of software technologies

1) applies a seven-step methodology for data collection and analysis, 2) couples

problem formulation with quantitative analysis methods, and 3) suggests an

analysis classification scheme. The following sections describe these aspects of

the approach.

2.1. Methodology for Data Collection and Analysis

The methodology described for data collection and analysis has been quite

useful. The methodology consists of seven steps that are listed below and dis-

cussed In detail In the following paragraphs (see also [Basili &_ Welss 841). 1)

Formulate the goals of the data collection and analysis. 2) Develop a list of

specific questions of interest. 3) Establish approprlate metrics and data

categories. 4) Plan the layout of the Investigation. experimental desi1n. and

statistical analysis. 5) Design anl test the data collectron schleme. b) Per:'orm "

5

dt - -T
m -

~

the Investigation concurrently with data collection and validation. 7) Analyze

and Interpret the data In terms of the goal/questlon framework.

A first step In a management or research process is to define a set of goals.
4.

Each goal Is then refined Into a set of sub-goals that will contribute to reaching

that goal. This refinement process continues until specific research questions

and hypotheses have been formulated. Associated with each question are the

data categories and particular metrics that will be needed in order to answer

that question. The Integration of these first three steps in a

goal/question/metric hierarchy (see Figure 1) expresses the purpose of an

analysis, defines the data that needs to be collected, and provides a context In

which to Interpret the data.

Figure 1. Goal/ question/ metric paradigm.

Goals.
GI G G

Questions: A
Q Q s QQ4 Q

Metrics.,

In order to address these research questions, Investigators undertake several

types of analyses. Through these analyses, they attempt to increase substantial-

ly their knowledge and understanding of the varlous aspects of the questions.

The analysis process Is then the basis for resolving the research questlons and

.- ".., .

. . S- S!

for pursuing the various goals. Before actually collecting the data, the data

analysis techniques to be used are planned. The appropriate analysis methods

may require an alternate layout of the Investigation or additional pieces of data

to be collected. A well planned Investigation facilitates the interpretation of the

data and generally increases the usefulness of the results.

Once It Is determined which data should be gathered, the Investigators

design and test the collection method. They determine the Information that

can be automatically monitored, and customize the data collection scheme to

the particular environment. The several types of data that need to be collected

usually require a data collection plan balanced across collection forms, automat-

ed measurement, and personnel Interviews. After all the planning has occurred,

the data collection Is performed concurrently with the Investigation and Is ac-

companled by suitable data validity checks.

As soon as the data have been validated, the Investigators do preliminary

data analysis and screening using scatter plots and histograms. After fulfilling

the proper assumptions, they apply the appropriate statistical and analytical

methods. The statistical results are then organized and interpreted with respect

to the goal/question framework. More Information Is gathered as the analysls

process continues, with the goals being updated and the whole cycle progressing.

2.2. Coupling Goals With Analysis Methods

Several of the steps In the above data collectlon and analysls methodology

interrelate with one another. The structure of the goals and quest~nns shouWd bp

.... ..p7

coupled with the methods proposed to analyze the data. The pai'tIcular ques-

tIons should be formulated to be easily supported by analysis techniques. In ad-

dition, questions should consider attributes that are measurable. Most analyses

make some result statement (or set of statements) with a given precision about

the effect of a factor over a certain domain of objects. Considering the form of

analysis result statements will assist the formation of goals and questions for an

Investigation, and will make the statistical results more readily correspond to

the goals and questions.

2.2.1. Forms of Result Statements

Consider a question in an Investigation phrased as "For objects In the

domain D, does factor F have effect S?". The corresponding result statement

could be "AnalysIs A showed that for objects In the domain D, factor F had

effect S with certainty P.".In particular, a question could read "For novice

programmers doing unit testing, does functional testing uncover more faults

than does structural testing?". An appropriate response from an analysis may

then be "In a blocked subject-project study of novice programmers doing unit

testlng, functional testing uncovered more faults than did structural testing (a

< .051.

Result statements on the effects of factors have varying strengths, but usu-

ally are either characteristic, evaluative, predictive, or directive. Characteristic

statements are the weakest. They describe how the objects In the domain have

ch2nged as a result of the factor. E.g.. "A blocked subject-project study of no-

8

1

vice programmers doing unit testing showed that using code reading detected

and removed more logic faults than computation faults (a < .05)." Evaluative

statements associate the changes In the objects with a value, usually on some

scale of goodness or Improvement. E.g., "A blocked ;ubject-project study of no-

vice programmers doing unit testing showed that using code reading detected

and removed more of the expensive faults to correct than did functional testing

(a < .05)." Predictive statements are a stronger statement type. They describe

how objects in the domain will change If subjected to a factor. E.g., "A blocked

subject-project study showed that for novice programmers doing unit testing,

the use of code reading will detect and remove more logic faults than computa-

tion faults (a < .05)." Directive statements are the strongest type. They fore-

tell the value of the effect of applying a factor to objects In the domain. E.g.,

"A blocked subject-project study showed that for novice programmers dolng

unit testing, the use of code reading will detect and remove more of the expen-

sive faults to correct than will functional testing (a < .05)." The analysis pro-

cess then consists of an investigative procedure to achieve the result statements

of the desired strength and precision after considering the nature of the factors

and domains involved.

Given any factor, researchers would like to make as strong a statement

with as high a preclslon about Its effect In as large a domain as possible. Unfor-

tunately, as the statement applies to an Increasingly large domain, the strength

of the statement or the precision with whilch we can make it nay ecrea e. I:

order for analyses to produce usefiul statements about factors In lar';e domis,

- . -

'7~ s- - --. - 7 T .7. .7- - . . -- , - . . - • . .

the particular aspects of a factor and the domains of Its application must be

well understood and incorporated into the Investigative scheme.

2.3. Analysis Classification Scheme

Two important sub-domains that should be considered In the analysis of

factors In software development and modification are the Individuals applying

the technology and what they are applying It to. These two sub-domains will

loosely be referred to as the "subjects," a collection of (possibly multi-person)

teams engaged In separate development efforts, and the "projects," a collection

of separate problems or pieces of software to which a technology Is applied. A

general classification of several software analyses In the literature can be ob-

tained by examining the sizes of these two sub-domains that they consider.

10
IM

~.

Figure 2. Categorization of analyses of software.

projects

one nnre than one

one Isingle project rnulti-projectI
variation

tearm per

proec I replicated blocked

nnre than project subject-projectI
one

Figure 2 presents this four part analysis categorization scheme. Blocked

subject-proJect studies examine the effect of possibly several technologies as

they are applied by a set of subjects on a set of projects. If appropriately

-,

configured. this type of study enables comparison within the groups of technolo-

gles, subjects, and projects. In replicated project studies, a set or subjects may

separately apply a technology (or maybe a set of technologies) to the same pro-

ject or problem. Analyses of this type allow for comparison wilthin the groups

of subjects and technologies (If more than one used). A multi-project variation

tuyexamines the effect of one technology (or maybe a set of technologles) as

applied by the same subject across several projects. These analyses support the

comparison within groups of projects and technologies (If more than one used.

A sinsgle project analysis Involves the examination of one subec7 applylnq a

ecrnoloty on a single project. The a"a'ys"s must partl1lon the

the particular project. tochnnloqy, or subject for comparlson pu..po(eS.

one [[.11

. -=

Result statements of all tour types mentioned above can be derived from

all these analysis classes. However, the statements will need to be qualified by

the domain from which they were obtained. Thus as the size of the sampled

domain and the degree to which it represents other populations Increase, the

wider-reaching the conclusion.

The next section cites several software analyses from the literature and

classifies them according to this scheme pictured in Figure 2.

12

;. . . _ :,. -. •- . -... :..: -.. . . .-...-.... -.. .:,

2.4. Classification of Analyses of Software

Several Investigators have published studies In the four general areas of

blocked subject-project, replicated project, multl-project variation, or single

project. The following sections cite analyses of the software development pro-

cess and product from each of these categories. Note that surveys on experl-

mental methodology In empirical studies have appeared In the literature !Brooks

80, Shell 81, Moher & Schneider 821.

2.4.1. Blocked Subject-Project Studies

[Curtis et al. 79] describe two experiments investigating factors that

Influence two aspects of software maintenance, understanding existing programs

and accurately implementing modifications to them. The analyses Involved the

performance of 72 programmers operating on several versions of programs in

three general software classes. The factors examined Include control flow com-

plexity, variable name mnemonlclty, type of modification, degree of comment-

Ing, and the relation of programmer performance to various complexity metrics.

They continued the Investigation of how software characteristics relate to

psychological complexity In [Curtis. Sheppard & NIliman 70]. ThIs second pa-

per describes a third experiment monitoring the ability of .54 programmers to

detect different program bugs In dlstinct program versions.

'Hetzel 76] conducted a controlled experlment comparing ditferent software

testlng techniques. The methods of functional testing, codle rfalin', and a con-

trol zreup (both capablllties were appiled by 30 sublects to three dilerent pr(>

13

grams. In addition to describing technique performance, the testing strategies

were related to factors of programmer background, self estimates of perfor-

mance, and attitude.

(Mlara et al. 83] describe a study to determine the contribution of Indenta-

ton to program comprehensibility. The experimental approach examined the

factors of level and type of Indentation, as well as level of programmer experi-

ence. The understanding of seven different program variations was obtained by

a comprehension quiz and a subjective rating of how difficult the program was

to comprehend.

[Weissman 74] described several experiments conducted to measure a

subject's ability to understand a program and his/her ability to modify It. The

four areas of factors examined Included aspects of program form, control flow,

data flow, and Interaction between control and data flow. The number of sub-

jects studied ranged from 16 - 48. Each experiment used two different pro-

grams presented In varying combinations of the above factors. The measure-

ments of understanding Included self-evaluations, fill-In-the-blank quizzes, pro-

gram hand simulation, ability to modify the program, and comprehension

quizzes. The experiments were conducted sequentially to support the

refinement of an appropriate experimental methodology.

[Gould & Drongowskl 74] examined several factors related to computer pro-

gram debugging: effect of debugging aids, effect of fault type. and effect of par-

ticular program debugged. Thirty experienced programmers separately de-

bugged programs that contained a single fault. Three classes of faults in four

14

;'2: . .. - - -- , " ". -

different one-page programs were used. Learning effects were examined and

some possible "principles" of debugging were Identified. Consistent results were

obtained when the study was conducted on ten additional experienced program-

mers [Gould 75].

[Gannon & Horning 75] Investigated the factor of language design and Its

relation to the reliability of the resulting software. Nine different language

modifications were made to a programming language based on a analysis of Its

deficiencies. Two differently experienced subject groups completed Implementa-

tons of two small but sophisticated programs (75-200 line) in the original

language and In Its modified version. The performance of the redesigned

features In the two languages were contrasted In the frequency, type, and per-

sistence of faults In the programs written by the subjects.

(Soloway & Ehrllch 84] examined two aspects of programming knowledge:

programming plans and rules of programming discourse. Programming plans

are generic program fragments that represent stereotyplc action sequences In

programming. Rules of programming discourse capture conventions In program-

mlng and govern the composition of the plans Into programs. A total of 139

subjects participated In an experiment that required them to fill-In-the-blank In

programs selected from four different software types. Some of the programs

were written to violate certain hypothesized programming plans and discourse

rules. A second similar study Involving 41 professional programmers was con-

ducted. The results In general support the existence and use of such plans and

rules by both novIce and advanced programmers.

15

CN

Other blocked subject-project studies include [Panzl 81, \Voodfield,

Dunsmore & Shen 81].

2.4.2. Replicated Project Studies

[Basill & Reliter 81] present a study In which three different software devel-

opment approaches are analyzed and compared. Seven three-person teams used

a disciplined approach, six teams used an ad hoc approach, and six individuals

used an ad hoc approach. Each of the 1g separate development efforts Imple-

mented a 1200 line compiler project. This allowed a comparison among the

different development approaches, as well as among usability of various metrics

for process measurement. A primary motivation for the experiment was to

confirm certain beliefs of the beneficial effects of a particular disciplined meth-

odology for software development. The researchers examined the factor of de-

velopment technique and showed partial support for some of the beliefs by cap-

turing several objective and automatable metrics of the development process

and product.

[Johnson, Draper & Soloway 83] describe one of several studles done with

the Intention of characterizing misconceptions made by programmers and how

they are manifested as bugs In programs. In this work they Inspected the at-

tempted Implementations of an elementary problem by 204 novice program-

rners. They then classified the differences between the Incorrect "buggy" pro-

grams and correct verslons of slmllar str':cture. The differences were explalned

relative to mistakes In "programming, plans- Intended by the Individual [Solo-

16

N

way et al. 82]. Further work comparing the factor of design strategies of novice

and expert programmers Is underway [Soloway 83].

.1'

[Bailey 84] presents preliminary observations from an experiment In which

the Ada programming language was taught in two different fashions. 1 One class

of subjects was first taught the high-level concepts supported In the language,

such as modular design and data abstraction, and then taught the actual con-

structs and syntax of the language. The same material In a reverse order was

presented to a second class of subjects; that Is, constructs first and concepts

second. Thus the factor studied was order of presentation of material. In addl-

tion to some preliminary exercises and academic scores, the two groups were

compared on their ability to apply Ada In the design (only) of a small software

system.

[Knight 84] examined the possibility of building ultra-reliable software sys-

tems by using N-verslon programming. The technique of N-version program-

ming [Kelly 82] uses a high-level driver to connect several separately designed

versions of the same system. The systems then "vote" on the correct solution,

and the solution provided by the majority of the systems Is output. The study

examined 37 separately designed versions of the same 800 source line system.

The factors examined Included Individual system rellabIlity, total N-verslon sys-

tem reliability, and classes of faults that occurred In systems simultaneously.

iGannon 77] Investigated the factor or static typing In p...ramm.n,'"

languages. Two languages were generated whlch were ,ssentlally ,r;~v lnr ox-

Ada Is a trademark or th U S Det. or Derense.

17 IM

.> > / _ . -. - , -. . , . . ., : :,, , - .. - ,2 -2 -. _ ,.. ".. .. -,

cept for differences In the type conventions: one was statically typed (with In-

teger and string types) and the other typeless (e.g., arbitrary subscrlpting of

memory). A group of 38 subjects programmed the same problem In both

languages, with half doing It In each order. The two languages were compared

In the types of faults in the resulting programs, the number of runs containing

faults, and the relation of subject experience to fault proneness.

[Shnelderman et al. 77] examined the factor of detailed flowcharts as an aid

to program composition, comprehension, debugging, and modification. A series

of five experiments was conducted on groups of 53 - 70 subjects of novice to In-

termediate expertise. A single program was used In all experiments except one,

which used two programs. All experiments compared the performance In vari-

ous programming tasks between groups that used some form of flowchart and

those that did not. The performance of the groups was measured by

comprehension quiz scores, correctness of programs written, correctness of

modifications requested, and successful removal of seeded faults. No slgnlficant

differences were reported between groups that used and those that did not use

flowcharts.

fParnas 72a] Investigated the factor of proper system modularity as a

means to eliminate the "integration phase" In development. A given system

was decomposed into five modules, and four different types of Implementation

were speclfted for each module. Twenty subjects then Independently developed

the distinct Implementations for the particular modules. At project completlon.

numerous comblInatlons of the modules were assembied to form separate ver-

18

slons of the whole system. The minor effort required In assembling the systems -

evidenced support for the Ideas on formal specifications and modularity dis-

cussed In [Parnas 72b, Parnas 72c].

[Boehm et al. 84] Investigated the system development approachs of proto-

typing and specifying. Seven teams developed versions of the same application

software system (2000 - 4000 line); four teams used a requirement/design

specification approach and three teams used a prototyping approach. The final

prototyped products were smaller, required less development effort, and were

easier to use. The systems developed by specifications had more coherent

designs, more complete functionality, and software that was easier to Integrate.

[Myers 78] examined the factor of program testing technique and Its rela-

tion to defect detection. fhe three techniques of 3-person walk-throughs, func-

tional testing, and a control group were compared In the testlng of a small (100

line) but nontrivial program. Fifty-nine data processing professionals were used

as subjects. The techniques and their random pairings were compared In the

number of faults found and their cost-effectiveness. The single techniques were

not different In the number of faults they detected, while pairings of techniques

;were superior In terms of number of faults found.

Other replicated project studies Include [Buck 81. Hwang 81, Hutchens &

BasIll 83'.

19

* . •

2.4.3. Multi-Project Variation Studies

[Walston & Felix 77, Bailey & Basill 81, BasIll & Freburger 81, Brooks 81,

BasIll, Selby & Phillips 83, Vosburgh et al. 841 are some of the numerous studies
St

d

that have examined technological factors across several projects. The studies

that consider separate development efforts coming from a single team or homo-

geneous environment genuinely belong In this category. Those that considered

projects from a collection of heterogeneous teams or environments, such as [Vos-

burgh et al. 84], are placed here because they examined the differences In effect

of the factors, but not the teams or environments. The factors Investigated In-

elude structured programming, personnel background, development process and

product constraints, project complexity, human and computer resource con-

sumptlon, project duration, staff size, degree of management control, and pro-

ductIvlty. In particular, [Balley & Baslll 81] mention 82 factors that could pos-

sibly affect project performance, Including 36 from [WValston & Felix 77] and 16

from [Boehm 811. They then describe a model generation process that uses a

base-line of particular environmental aspects and captures differences among

projects. The number of projects examined ranges from 1s In [Bailey & BasIll

Si] to .51 In [Walston & Felix 77, Brooks S]. Among other results. these studles

have led to Increased project visibility, greater understanding of classes of :ac-

tors sensitive to project performance, awareness of the need for project measure-

mert. and efforts for standardlzatlon of deflnItIons. .- nalysls has begun on In-

corporatIng project variation Information Into a management tool " 'I "

DcerflInger S3.

20

[Bowen 84] examined the factors of estimating the number or residual

faults In a system and of assessing the effectiveness or various testing stage-.

The study was based on fault data collected from three large (2000 - 6000

module) systems developed In the Hughes-Fullerton environment. The study

partitioned the faults based on severity and analyzed the differences In esti-

mates of remaining faults according to stage of testing.

[Adams 84] examined the factor of managing preventive service of software

products In operational use. Preventive service constitutes Installing fixes to

faults that have yet to be discovered by particular users, but have been

discovered by the vendor or other users. The study developed means to esti-

mate whether and under what circumstances preventively fixing faults In opera-

tlonal software In the field was appropriate. The fault history for several large

products (e.g., operating system releases, major components thereof) was empiri-

cally modeled.

[Vessey & Weber 831 examined the contribution of several factors to soft-

ware maintenance: program complexity, programming style, programmer quali-

ty, and number of system releases. A total of 447 commercial and clerical

Cobol progr-ams In operation in one Australian organization and In two U.S. or-

ganizatlons were analyzed. The programs ranged from small to over 600 state-

ments. In the Australian organization program complexity and programmIng

style sIgnlflcanllv affected the rate of maintenance repair. In the U.S. or-anlza-

Ilns the number of times a system w:s relesed siu nlcantlv affected the

maintenance repalr rate.

21 M

. ..-.

2.4.4. Single Project Studies

[Endres 75, Basill & Weiss 81, Albin & Pprreol 82, Ostrand & Weyuker 83,

BasIll & Perricone 841 present the analysis of the distribution and relationships

derived from change data collected during the development of a moderate to

large software project. On a within project basis, they examined such factors as

the frequency and distribution of faults during development, and their relation-

ship with the factors of module size, software complexity, developer's experi-

ence, method of detection and Isolation, phase of entrance Into the system and

observance, reuse of existing design and code, and role of the requirements do-

cument. Although conducted on only a single project, such analyses have pro-

duced fault categorization schemes and have been useful In understanding and

Improving a development environment.

[Gannon et al. 83, BasIll et al. 85] examined a ground-support system writ-

ten in Ada to characterize the use of Ada packages. Factors such as how pack-

age use affected the ease of system modification and how to measure module

change resistance were Identified, as well as how these observations related to

aspects of the development and training.

[Basili & Ramsey 84, Ramsey 84] Investigated the structural coverage of

functionally generated Input data. The functionally generated acceptance test

cases and a sample of operational usage cases were analyzed from a medlum-

sized (10.000 line) satellite support system. The study examined the factors of

the structural coverage of functional acceptance testing, the structural coverage

22";

-

of operational product usage, the relationship between the program segments

covered in acceptance testing and those covered In usage, and the relationship

between structural coverage and fault detection.

[Baker 72a] analyzed the effect or applying chief programming teams and

structured programming in system development. The large (83,000 line) system

discussed Is known as The New York Times Project. The project served as a

field test for the new programming methodology concepts of structured code,

top down deslgn, chief programmer teams, and program llbrarles. Several

benefits were Identified, including reduced development time and cost, reduced

time in system Integration, and reduced fault detection In acceptance testing

and field use.

23

...

3. Evaluation of Software Technologies: Problem Selection

The approach described In the previous section is intended to structure the

process of analyzing software technologies by coupling software methodology

evaluation with software measurement. The paradigm Is applied in-depth In

three different analyses. In addition to evaluating software technologies, the

studies demonstrate the feasibIlity, utility, and effectiveness of the quantitative

analysis paradigm. This section describes the selection of the different investi-

gatlons conducted. The selection criteria for all the studies is discussed first,

followed by an overview of each of the studies and how they apply the para-

dIgm.

3.1. Selection Criteria

Three different studies were chosen to satisfy several criteria: scope of

evaluation, domain sampling, quantitative analysis method, area of assessment,

scope of technology, and potential benefit.

1) Scope of Evaluation - Each of the analyses should be a distinct type of

study relative to the categorization of blocked subject-project, replicated pro-

ject, multi-project variation, and single project. These different classes

represent different pairIngs of the domain sizes of subjects and projects. Using :.

the paradigm In these different categories shows its support for analysis of tech-

nologzles across different scopes o1 evaluation.

2) Domain Sampling - The samples chosen from the subject and praject

domains In the studies should be representative of reasonably are popuiacrs.

2;ohmn

Assessments using different sizes of software projects and different sizes of teams

should be chosen. The selection and analysis of appropriate samples facilitates

the extrapolation of the results to other environments, Increases the usefulness

of the results, and shows the performance of the paradigm In such situations.

3) Quantitative Analysis Method - Each of the studies should utilize a

different method of quantitative analysis. Statistical techniques provide a

soundly based, objective, and usually automatable mechanism to accomplish

quantitative analysis tasks. Unfortunately, however, the amount of data re-

quIred by some statistical approaches leaves them economically infeasible. Even

with sufficient data, the generated results may yield unacceptable precision, too

much unexplained variance, or doubt as to whether all the Important factors are

effectively captured. The use of this evaluation paradigm with a variety of

quantitative methods demonstrates the flexibility of the approach across varying

amounts and types of data.

4) Area of Assessment - The different problem areas Investigated should

not be precisely understood areas of software development and modification.

The areas chosen should have open questions and unresolved Issues. Selecting

problems with these attributes provides a scenarlo slmllar to declslon making si-

tuatlons In the field, where the proper outcome of the analysis Is not known be-

forehand.

5) Scope of Technology - The analyses should examine technolo(,,es rha-"

are have distinct scopes of usage durlng softw.are levelopment and moilflcatlon.

Three dIfferent scopes of usage for technologies ar a) nt individual technlque: a 2.

25-o

i-

single technique used In conjunction with other techniques during a software

project; b) development methodology: a system of methods that applies across

the whole software project development; and c) environment methodology: a

system of methods that applies across several projects In a development or

modification environment. Using the paradigm In these categories demonstrates

Its effectiveness for evaluation of technologies having varying scopes of usage.

6) Potential Benefit - The analyses should address factors that can

significantly contribute to the quality of the software development process and

the developed product. The need for analysis of which factors contribute to

quality In software development and modification Is fundamental to the ad-

vancement of the field. The production of useful results from the use of the ap-

proach helps demonstrate Its merIt.

3.2. Analysis Selection

From the above set of criteria, three analyses were selected: 1) a comparls-

on of software testing strategies; 2) an analysis of Cleanroom software develop-

ment; and 3) a calculation of a: characteristic software metric set. Figure 3 sum-

marIzes these studies relative to the criteria explained. Recall the use of the

symbols from the previous section describing the quantitative mIthodology: D

for domain sampled. F for factor or technology analyzed. and S for result state-

ment type. As displayed In the figure, the above set of crlterla are satls"Ied by

the particular analyses selected. The following three sections dlscuss the applil-

catlon of the approach In the partlcular studies.

26

i

,..

Figure 3. Three analyses selected. __________________

_________________ Testinz Study r Cleanroom Study ICharacteristic Se~t

Scope of Evaluation blocked subject- replicated multi-project
________________ . project I project j variation

.4

Subject Domains
Sampled (DI) __)

Number 74 15 small teams 1 medium
Individuals (3-person) environment

(23-person)

Expertise junior - junior - junior -
_ advanced Intermediate advanced

Project Domains

Sampled (D 2)

,'umber 4 1 .

Size unit small system large system
(160 - 350 LOC) (1200 LOC) (51,000 - 112,000

LOC)

Quantitative fractional non-parametric factor
Analysis Method factorial statistics analysis

design _ _

Area of defect project project
Assessment detection development management

Scope or Individual development environment
Technologies technique methodology methodology

Factors (F) code reading Cleanroom SEL
functional testing development environment
structural testing traditional

develoDment
Potential increase increase product better project
Benefit effectiveness quality and monitoring and

of defect process control control
detection

Result characteristic characteristic charact eristic
Statements (S) evaluative evaluative evaluative

predictive predictive predictive

3.2.1. Software Testing Strategy Comparison

The software testing strategy anal1s s : blocked s ib)ect-projoct s-, : 1

v 1 .7-41 n, 11% :aIs a p p 11 1 3 ,1 fter nt nt, r, n i . . e < 4 i , .r- " : -

27

ware types. The Individuals (domain D i) were selected from the populations of

junior, Intermediate, and advanced programmers, and the programs tested

(domain D 2) were of unit size and were selected from four populations of soft-

ware types. The programs had a distribution of faults that commonly occur In

software. A series of fractional factorial designs was employed In the analysis.

Software testing and defect detection are Inexact and not very well understood

areas of software production. Yet the activities of testing and defect detection

are essential to the success of a software project. The three individual tech-

nlques (factors F) examined were code reading, functional testing, and structural

testing. Result statements (statement strengths S) characterizing, evaluating,

and predicting the effect of each of these techniques are intended from the

analysis. The major area of benefit from the analysis will be Increasing the

effectiveness of software testing and defect detection. The goals of this study

are to contrast the strategies In three different aspects of software testing: 1)

fault detection effectiveness, 2) fault detection cost, and 3) classes of faults

detected.

3.2.2. Cleanroom Development Approach Analysis

The Cleanroom development approach analysis Is a replicated project study

In which 15 small teams (3-person) separately applied two different software de-

velopment methodologies to build versions of the same small message system:

ten teams applied Cleanroom, while five applied a more traditional approach.

The individuals (domain D ,) were selected from the populations of JunIor and

28

. ,_: . . - _ , : - -

Intermediate programmers, and the system built (domain D 2) was a small sys-

tem selected from the population or small systems of moderate complexity.

Non-parametric statistics were applied to contrast the performance of the two

development methodologies. The outcome of a software project is largely a

function of the development methodology used, and the software community Is

uncertain which development approaches consistently produce a quality pro-

duct. The two development methodologies (factors F) examined were Clean-

room software development and a tradltlonal team methodology. The Clean-

room software development approach is Intended to produce highly reliable soft-

ware by integrating formal methods for specification and design, complete off-

line development, and statistically based testing. Result statements (statement

strengths S) characterizing, evaluating, and predicting the effect of the two de-

velopment methodologies relative to one another are intended from the analysis.

The major area of benefit from the analysis will be Increasing product quality

and development process control. This study analyzes the effect of Cleanroom,

relative to a traditional approach, on the delivered product, the software devel-

opment process, and the developers.

3.2.3. Characteristic Metric Set Study

The characteristic metric set analysis is a multl-project variation study in

which one development environment applled Its methodology to 6 software pro-

jects. The environment (domain DI) was selected from the populatlon of pro-

dilcrlon environments, and the projects developed (domain D .) were large sys-

29

tems selected from the population of large, moderately complex software sys-

terns. The quantitative analysis method used was factor analysis. The manage-

ment of software projects Is a challenging and Ill-defined task. Better monitor-

Ing and control of software projects lead to more successful project manage-

ment, and possibly higher product requirement conformance and reliability.

The environment methodology (factor F) examined was the environment meth-

odology of a NASA Goddard production environment. Result statements (state-

ment strengths S) characterizing, evaluating, and predicting the effect of the

particular environment methodology on projects are Intended from the analysis.

The major area of benefit from the analysis will be Increasing the ability to

monitor and control software projects. The goals of this study are to 1) develop

an approach for customizing a characteristic software metric set to a particular

environment; 2) calculate the characteristic metric set for a NASA Goddard en-

vironment; and 3) examine the usability of this approach as a management tool.

3.3. Methodology Application

The three analyses described above are intended to advance the under-

standing of factors that contribute to quality In software development and

modification. The next section presents the In-depth analysis for each of the

studies, Including the goal/question framework, appropriate software metrics.

data analysis. and results.

30

.- -° . i- - . .- .. . - -. % , - . .- . :. ' . - . - . . m. ,

4. Evaluation of Software Technologies: Analysis and Results

The following sections present three studies In which the quantitative

methodology described earlier Is applied: a blocked subject-project study com-

paring software testing strategies, a replicated project study characterizing the

effect of using the Cleanroom software development approach, and a multi-

project variation study to determine a characteristic set of software cost and

quality metrics.

4.1. Software Testing Strategy Comparison

The processes of software testing and defect detection continue to challenge

the software community. Even though the software testing and defect detection

activities are inexact and Inadequately understood, they are crucial to the suc-

cess of a software project. The controlled study presented addresses the uncer-

tainty of how to test software effectively. In this investigation, common testing

techniques were applied to different types of software by subjects that had a

wide range of professional experience. This work Is intended to characterize

how testing effectiveness relates to several factors: testing technique, software

type, fault type, tester experience, and any Interactions among these factors.

This examination extends previous work by Incorporating different testing tech-

niques and a greater number of persons and programs, while broadening the

scope of issues examined and adding statistical significance to the conclusions.

This section describes the testing techniques examined, the lnvestigatlon

goals, the experimental design, operation. analysis, and 'onclusLus.

31

,%-

4.1.1. Testing Techniques

To demonstrate that a particular program actually meets Its specifications,

professional software developers currently utilize many different testing

methods. Before presenting the goals for the empirical study comparing the po-

pular techniques of code reading, functional testing, and structural testing, a

description will be given of the testing strategies and their different capabilities

(see Figure 4.). In functional testing, which is a "black box" approach [Howden

801, a programmer constructs test data from the program's specification through

methods such as equivalence partitioning and boundary value analysis [Myers

791. The programmer then executes the program and contrasts its actual
I.

behavior with that Indicated In the specificatlon. In structural testing, which Is

a "white box" approach [Howden 7S, Howden 81], a programmer Inspects the

source code and then devises and executes test cases based on the percentage of

the program's statements or expressions executed (the "test set coverage")

[Stuckl 77]. The structural coverage criteria used was 100% statement cover-

age. In code reading by stepwise abstraction, a person Identifies prime subpro-

grams In the software, determines their functions, and composes these functions

to determine a function for the entire program [Millls 72a, Linger, MIlls & Witt

791. The code reader then compares this derived function and the specifications

(the Intended function). In order to contrast these various strategies, an empirl-

cal study has been conducted using the techniques of code reading, functional

testing, and structural testing.

32
'-A

'-

w 7 I: .- 1.-

Figure 4. Capabilities of the testing methods.

code reading functional structural

testing testing

view program
specification X X X

view source

code X X

execute
program X X

4.1.1.1. Investigation Goals

The goals of this study comprise three different aspects of software testing:

fault detection effectiveness, fault detection cost, and classes of faults detected.

An application of the goal/question/metric paradigm [BasIlI & Selby 84, Basill

& Weiss 841 leads to the framework of goals and questions for this study ap-

pearing In Figure 5.

The first goal area Is performance oriented and Includes a natural first

question (I.A): which of the techniques detects the most faults In the programs?

The comparison between the techniques Is being made across programs, each

with a different number of faults. An alternate interpretation would then be to

compare the percentage or faults found in the programs (question I.A.1). The

number of faults that a technique exposes should also be compared; that Is,

faults that are made observable but not necessarily observed and reported by a

tester (I.A.2). Because of' the differences In types of software and In testers'

abllltles. It is r-levant to determIne whlether the number of faults detected Is el-

33

* V

ther program or programmer dependent (I.B, I.C). Since one technique may

find a few more faults than another, It becomes useful to know how much effort

that technique requires (I.A). Awareness of what types of software require

more effort to test (If.B) and what types of programmer backgrounds require

less effort In fault uncovering (II.C) is also quite useful. If one is interested In

detecting certain classes of faults, such as In error-based testing [Foster 80,

Valdes & Goel 83], It is appropriate to apply a technique sensitive to that par-

ticular type (III.A). Classifying the types of faults that are observable yet go

unreported could help focus and Increase testing effectiveness (III.B).

Figure 5. Structure of goals/subgoals/questions for testing experiment.

I. Fault detection effectiveness

A. For programmers doing unit testing, which of the testlng techniques
(code reading, functional testing, or structural testlng) detects the
most faults In programs?

1. Which of the techniques detects the greatest percentage of faults In
the programs (the programs each contain a different number of
faults)?

2. \Vhlch of the techniques exposes the greatest number (or percentage)
of program faults (faults that are observable but not necessarily

reported)?

B. Is the number of faults observed dependent on software type?

C. Is the number of faults observed dependent on the expertise level of the
person testlng?

I. Fault detection cost

A. For programmers dolng unit testing, which of1 the testlng techniqules
(code reading. functional testlng, or structural testing) detects the

34

faults at the highest rate (#faults/effort)?

B. Is the fault detection rate dependent on software type?

C. Is the fault detection rate dependent on the expertise level of the person

testing?

III. Classes of faults observed

A. For programmers doing unit testlng, do the methods tend to capture
different classes of faults?

B. What classes of faults are observable but go unreported?

4.1.2. Empirical Study

Admittedly, the goals stated here are quite ambitious. In no way Is It Im-

plied that this study can definitively answer all of these questions for all en-

vironments. It Is Intended, however, that the statistically significant analysis

presented lends insights Into their answers and Into the merit and appropriate-

ness of each of the techniques. Note that this study compares the individual

application of the three testing techniques In order to Identify their distinct ad-

vantages and disadvantages. This approach Is a first step toward proposing a

composite testing strategy, which possibly Incorporates several testing methods.

The following sections describe the empirical study undertaken to pursue these

goals and questions, Including the selection of subjects, programs, and experl-

mental design, and the overall operation of the study.

,3

- " - '""':-' " ' :"."......."...tl""u
r

...
. '

" '- " - :. .. . :,. .. ., ,.. . . ."-. .,'_," : '

4.1.2.1. Iterative Experimentation

The empirical study consisted of three phases. The first and second phases

of the study took place at the University of Maryland In the Falls of 1982 and

1983 respectively. The third phase took place at Computer Sciences Corpora-

tion (CSC - Sliver Spring, MD) and NASA Goddard Space Flight Center

(Greenbelt, MD) in the Fall of 1984. The sequential experimentation supported

the Iterative nature of the learning process, and enabled the Initial set of goals

and questions to be expanded and resolved by further analysis. The goals were

further refined by discussions of the preliminary results [Selby 83, Selby 84].

These three phases enabled the pursuit of result reproducibility across environ-

ments having subjects with a wide range of experience.

4.1.2.2. Subject and Program/Fault Selection

A primary consideration in this study was to use a realistic testing environ-

ment to assess the effectiveness of these different testing strategies, as opposed

to creating a best possible testing situation [Hetzel 76]. Thus, 1) the subjects

for the study were chosen to be representative of different leveis of expertise. 2)

the programs tested correspond to different types of software and reflect com-

mon programming style, and 3) the faults In the programs were representative

of those frequently occurring In software. Sampling the subjects, programs, and

faults In this manner Is Intended to evaluate the testlng methods reasonably,

and to facIlitate the generalization of the results to other environments.

36

4.1.2.2.1. Subjects

The three phases of the study Incorporated a total of 74 subjects; the ndl-

vidual phases had 29, 13, and 32 subjects respectively. The subjects were

selected, based on several criteria, to be representative of three different levels

of computer science expertise: advanced, Intermediate, and junior. The number

of subjects In each level of expertise for the different phases appears in Figure 6.

Figure 6. Expertise levels of subjects.

Phase

Level of 1 2 3 total
Expertise (Univ. Md) (Univ. Md) (NASA/CSC)

Advanced 0 0 8 8
Intermediate 9 4 11 24 .
Junior 20 9 13 42

total 29 13 32 74,

The 42 subjects In the first two phases of the study were the members of

the upper level "Software Design and Development" course at the UnIversity of

Maryland In the Falls of 1982 and 1983. The Individuals were either upper-level

computer science majors or graduate students; some were working part-time

and all were In good academic standing. The topics of the course Included

structured programming practices, functional correctness, top-down deslgn.

modular specification and design, step-wise refinement, and PDL, In addition to

the presentation of the techniques of code reading, functional testing, and struc-

tural testing. The rererences for the testing methods were 'NlIlls 75, Fagan 76,

Myers 79. Howden 80, and the lectures were presented by V. R. BasIll and F.

T. Baker. The subjects from the Unlverslty of Mfaryland spanned the Inter-

37

mediate and junior levels of computer science expertise. The assignment of In-

divIduals to levels of expertise was based on professional experience and prior

academic performance In relevant computer science courses. The Individuals In

the first and second phases had overall averages of 1.7 (SD = 1.7) and 1.5 (SD

= 1.5) years of professional experience. The nine Intermediate subjects In the

first phase had from 2.8 to 7 years of professional experience (average of 3.9

years, SD = 1.3), and the four In the second phase had from 2.3 to 5.5 years of

professional experience (average of 3.2, SD 1.5). The twenty junior subjects

In the first phases and the nine In the second phase both had from 0 to 2 years

professional experience (averages of 0.7, SD - 0.8, and 0.8, SD - 0.8, respec-

tively).

The 32 subjects In the third phase of the study were programming profes-

slonals from NASA and Computer Sciences Corporation. These Individuals

were mathematicians, physicists, and engineers that develop ground support

software for satellites. They were familiar with all three testing techniques, but

had used functional testing primarily. A four hour tutorial on the testing tech-

niques was conducted for the subjects by R. W. Selby. This group of subjects,

examined In the third phase of the experiment, spanned all three expertise levels

and had an overall average of 10.0 (SD = 5.7) years professional experience.

Several criteria were considered In the assignment of subjects to expertise levels.

Including years of professional experlence, degree background, and thelr

manager s suggested assIgnment. The eight advanced subjects ranged from 9.5

to 20.5 years professional experience (average of 15.0. SD = 4.1). The eleven

38

............................... ".'.................,.....-...

pi

Intermediate subjects ranged from 3.5 to 17.5 years experience (average of 10.9,

SD = 4.9). The thirteen junior subjects ranged from 1.5 to 13.5 years experl-

ence (average of 6.1, SD = 4.4).

4.1.2.2.2. Programs

The experimental design enables the distinction of the testing techniques

while allowing for the effects of the different programs being tested. The four

programs used In the Investigation were chosen to be representative of several

different types of software. The programs were selected specially for the study

and were provided to the subjects for testing; the subjects did not test programs

that they had written. All programs were written In a high-level language with

which the subjects were familiar. The three programs tested In the CSC/NASA

phase were written In FORTRKAN, and the programs tested In the University of

Maryland phases were written In the Simpl-T structured programming language

[Baslll & Turner 76]. 2 The four programs tested were P i) a text processor, P 2)

a mathematical plotting routine, Ps) a numeric abstract data type, and P4) a

database maintainer. The programs are summarized In Figure 7. There exists

some differentiation In size, and the programs are a reallstlc size for unit testIng.

Each of the subjects tested three programs, but a total of four programs was

used across the three phases of the study. The programs tested In each of the

three phases of the study appear In Figure 8. The specifications for the pro-

2 Slmpl-T Is a structured language that supports several string and 1i1e han-

dling prImitives. In adrdltlon to the usual control flow constricts av:illahle. for
example. In Pascal.

39

grams appear In Appendix B.1, and their source code appears In Appendix B.2.

Figure 7. The programs tested.

source executable cyclomatic #routines #faults
program lines statments complexity

P 1 - text 169 55 18 3 9
formatter

P 2 - mathematical 145 95 32 8 8

plotting
PS- numeric data 147 48 18 9 7

abstraction
P 4 - database 385 144 57 7 12

maintalner

Figure 8. Programs tested In each phase of the analysis.

Program Phase

1 2 3
(Univ. Md) (Univ. Md) (NASA/CSC)

P- text formatter X X X
P 2 - mathematical plotting X X
P 8 - numeric data abstraction X X
P , - database maintainer X X

The first program Is a text formatting program, which also appeared in

[Myers 78]. A version of this program, originally written by [Naur 69] using

techniques of program correctness proofs, was analyzed In [Goodenough &

Gerhart 75]. The second program Is a mathematical plotting routine. This pro-

gram was written by R. V. Selby, based roughly on a sample program In fJen-

sen & ,Wirth 74]. The third program Is a numeric data abstraction consistlng of

a set of list processing utilities. This program was submitted for a class project

by a member of an Intermedlate level programming coume at the Unlver Ity of

Maryland. [.IcMullln S: Gannon SO!. The fourth program Is a maintainer for a

40

?I

database of bibliographic references. This program was analyzed In [Hetzel 76],

and was written by a systems programmer at the University of North Carolina

computation center.

Note that the source code for the programs contains no comments. This

creates a worst-case situation for the code readers. In an environment where

code contained helpful comments, performance of code readers would likely Im-

prove, especially If the source code contained as comments the Intermediate

functions of the program segments. In an environment where the comments

were at all suspect, they could then be Ignored.

4.1.2.2.3. Faults

The faults contained In the programs tested represent a reasonable dlstrl-

butlon of faults that commonly occur In software [Wess & Basill 85, Basill &

Perricone 841. All the faults In the database maintainer and the numeric

abstract data type were made during the actual development of the programs.

The other two programs contain a mix of faults made by the original program-

mer and faults seeded In the code. The programs contained a total of 34 faults;

the text formatter had nine, the plotting routine had six, the abstract data type

had seven, and the database maintainer had twelve.

4.1.2.2.3.1. Fault Origin

The faults In the text formatter were preserved from the artlcle In which It

appeared '%Iyers 781, except for some of the more controversial ones [Callllau &

Rubln 791. In the mathematical plotter, faults made lturlng program translation

41

were supplemented by additional representative faults. The faults In the

abstract data type were the original ones made by the program's author during

the development of the program. The faults in the database maintainer were

recorded during the development of the program, and then reinserted Into the

program. The next section describes a classification of the different types of

faults In the programs. Note that this Investigation of the fault detecting ablll-

ty of these techniques involves only those types occurring In the source code,

not other types such as those In the requirements or the specifications.

4.1.2.2.3.2. Fault Classification

The faults In the programs are classified according to two different abstract

classification schemes [Basill & Perrlcone 841. One fault categorization method

separates faults of omission from faults of commission. Faults of commission

are those faults present as a result of an Incorrect segment of existing code. For

example, the wrong arithmetic operator Is used for a computation In the right-

hand-side of an assignment statement. Faults of omission are those faults

present as a result of a programmer's forgetting to Include some entity in a

module. For example, a statement Is missing from the code that would assign

the proper value to a variable.

A second fault categorizatlon scheme partitions software faults Into the six

classes of 1) Initialization, 2) computation. 3) control. 4) Interface, .5) data. and

6) cosmetic. Improperly Initializing a data structure constitutes an nitialilzation

fault. For example, assigning a variable the wrong value on entry to a module.

42

'

Computation faults are those that cause a calculation to evaluate the value for

a variable incorrectly. The above example of a wrong arithmetic operator In

the rlght-hand-side of an assignment statement would be a computation fault.

A control fault causes the wrong control flow path In a program to be taken for

some input. An incorrect predicate in an IF-THEN-ELSE statement would be a

control fault. Interface faults result when a module uses and makes assump-

tons about entities outside the module's local environment. Interface faults

would be, for example, passing an incorrect argument to a procedure, or assum-

Ing in a module that an array passed as an argument was filled with blanks by

the passing routine. A data fault are those that result from the incorrect use of

a data structure. For example, incorrectly determining the index for the last

element in an array. Finally, cosmetic faults are clerical mistakes when entering

the program. A spelling mistake in an error message would be a cosmetic fault.

Interpreting and classifying faults In software is a dlfflcult and inexact task.

The categorization process often requires trying to recreate the original

programmer's misunderstanding of the problem [Johnson, Draper & Soloway

83]. The above two fault classification schemes attempt to distinguish among

different reasons that programmers make faults In software development. They

were applied to the faults In the programs In a consistent interpretatlon: it Is

certainly possible that another analyst could have interpreted them dIfferently.

The separate application of each of the two classificatlon schemes to the faults

categorized them In a mutually exclusive and exhaustive manner. Figure 9

displays the distributlon of faults In the programs according to these schemes.

43 51

......................

Figure 9. Distribution of faults In the programs.
Omission Commission Total

Initialization 0 2 2

Computation 4 4 8
Control 2 5 7

, Interface 2 11 13
Data 2 1 3
Cosmetic 0 1 1

Total 10 24 34

4.1.2.2.3.3. Fault Description

The faults In the programs are described in Figure 10. There have been

various efforts to determine a precise counting scheme for "defects" In software

[Gloss-Soler 79, IEEE 831]. According to the explanations given, a software

"fault" Is a specific manifestation In the source code of a programmer "error."

For example, due to a misconception or document discrepancy, a programmer

commits an "error" (In his/her head) that may result In more than one "fault"

In a program. Using this Interpretation, software "faults" reflect the correct-

ness, or lack thereof, in a program. The entities examined In this analysis are

software faults.

Fiiire 10. Fault clksslflcatlon and manifestatlon.

FaultProgram Omission/ Class Description
Commission

44

-"-

a P1 omission control a blank Is printed before the first word
on the first line unless the first word Is
30 characters long; In the latter case, a
blank line Is printed before the first
word

b P1 commission InItializationthe character & (not $) Is the new-line
character

c P1 commlsslonlnltlallzationthe line size Is 31 characters (not 30);
this fault causes the references to the
number 30 In the other faults to be ac-
tually the number 31

d P1 commission Interface since the program pads an empty Input
buffer with the character " z," It Ignores
a valid Input line that has a "z" as a
first character

e P1 omission control successive break characters are not con-
densed In the output

f P1 commission cosmetic spelling mistake In the error message
*** word to long ***"

g P1 commission computation after detecting a word In the input
longer than 30 characters, the message

*** word to long ***" Is printed once
for every character over 30, and the pro-
cessing of the text does not terminate

h P1 omission Interface after detecting a word In the Input
longer than 30 characters, the program
prints whatever Is residing In Its output
buffer

I P1 commission control after detecting an Input line without an
end-of-text character, the program er-
roneously Increments its buffer pointer
and replaces the first character of the
next Input line with a "z"

P3 commission Interface routine FIRST returns zero (0) when the
llst has one element

k P3 commission Interface routine ISENPTY returns true (1) when
the list has one element

I P3 commission Interface routine DELETEFIRST can not delete
the first list element when the list has
only one element

m P3 commission Interface routlne LISTLENGTH returns one less
than than the actual length of the list

45

."- "- , -" . , ,."" "" ' ' . .' '" " . .,, ."' ., .'L . .,. ' ',, -... - ., . ,., .. ; - ' , ..- '' . . '. " ' " ' ''. . , - -" "" - .." -

! -. .1. -. • , - . : : - ._, , ,= .- :.:_, ._ . ..) .u.:.. 9 :,. .- : . .P .

n P3 commission Interface routine ADDFIRST can add more than
the specified five elements to the list

o P3 commission interface routine ADDLAST can add more than
the specified five elements to the list

p P3 omission computatlonroutine REVERSE does not reverse the
list properly when the list has more than

one element
q P4 commission computatlonwords greater than or equal to three

characters (not strictly greater than) are
treated as cross reference keywords

r P4 commission interface since the program uses the key "ZZZ" as
an end-of-Input sentinel, it does not pro-
cess a valid record with key "ZZZ" and
ignores any following records

s P4 commission control update action add with the error condl-
tion "key already in the master file" re-
places the existing record; the update
record Is not ignored

t P4 commission control update action replace with the error con-
dition "key not found In the master file"
adds the record; the update record is not
Ignored

U P4 omlsslon data the number of references and number of
words In the dictionary are not checked
for overflow

v P4 omission computationtwo or more. update transactions for the
same master record give Incorrect results

w P4 commission interface keywords longer than 12 characters are
truncated and not distinguished

x P4 commission control an update record with column 80 neither
an add action "A" nor replace actlon

"R" acts like an add transaction
y P4 commission Interface keyword Indices appear In reverse alpha-

betlcal order

z P4 omission interface no check is made for unique keys in the
master file

A P4 commission Interface punctuation Is made a part of the key-
word

B P4 omlsslon data words appearing twice in a title get two
cross reference entries

C P2 commission computatlonthe x and y axes are mislabeled

46

D P2 omission computatlonpoints with negative y-values are not
processed and do not appear on the
graph

E P2 commission control the origin (0,0) appears on the graph re-
gardless of whether It Is an Input point

F P2 commission data no points can appear on the vertical axis P,

G P2 commisslon computation the vertical and horizontal scaling for
the pixels are calculated incorrectly,

causing some points not to appear In the
proper pixel

H P2 omission computatlonwhen more than one point would appear
In a given pixel, only an asterisk (,) ap-
pears, not an appropriate integer

4.1.2.3. Experimental Design

The experimental design applied for each of the three phases of the study

was a fractional factorial design (Cochran & Cox 50, Box, Hunter, & Hunter 781.

This experimental design distinguishes among the testing techniques, while al-

lowing for variation In the ability of the particular Individual testing or In the

program being tested. Figure 11 displays the fractional factorial design ap-

propriate for the third phase of the study. Subject S1 Is In the advanced exper-

tise level, and he structurally tested program P 1, functionally tested program

P,9, and code read program P 4. Notice that all of the subjects tested each of

the three programs and used each of the three techniques. Of course, no one

tests a given program more than once. The design appropriate for the thlrd

phase Is discussed In the following paragraphs, with the minor differences

between this design and the ones applied In the first two phases belng dlscusse.

at the end of the section.

,t7

Figure 11. Fractional Factorial Design. ,.-_°

Code Functional Structural

_ _ _Reading Testing Testing

P 1 P 8 P4 P 1 P 8 P P 1 P8P-

Si -X -X-- X-
Advanced S2 X- -X

Subjects-

S8 X.- -X -X-.

S X X- -X

Inter- S 10 -X -- X-
mediate .

Subjects .

S 19 X- -X

20 -X- X- X
Junior S 2 1 X- - X -X-

Subjects .

S82 -X -X- X-

4.1.2.3.1. Independent and Dependent Variables

The experimental design has the three independent variables of testing

technique, software type, and level of expertise. For the design appearing In

Figure 11, appropriate for the third phase of the study, the three main effects

have the following levels:

1) testing technique: code reading, functional testing, and structural testlng

2) software type: (Pl) text processing, (P.) numeric abstract data type, and

(P) database maintainer

3) level of expertise: advanced, Intermediate, and junior

Every combination of these levels occurs In the design. That Is, programmers In

48

all three levels of expertise applied all three testing techniques on all programs.

In addition to these three main effects, a factorial analysis of variance (ANOVA)

model supports the analysis of Interactions among each of these main effects.

Thus, the Interaction effects of testing technique * software type, testing tech-

nlq • expertise level, software type * expertise level, and the three-way In-

teraction of testing technique * software type * expertise level are Included In

the model. There are several dependent variables examined in the study, in-

cluding number of faults detected, percentage of faults detected, total fault

detection time, and fault detection rate. Observations from the on-line methods

of functional and structural testing also had as dependent variables number of

computer runs, amount of cpu-time consumed, maximum statement coverage

achIeved, connect time used, number of faults that were observable from the

test data, percentage of faults that were observable from the test data, and per-

centage of faults observable In the from the test data that were actually ob-

served by the tester.

4.1.2.3.2. Analysis of Variance Model

The three main effects and all the two-way and three-way Interactlons

effects are called fixed effects In thIs factorial analysis of varlance model. The

levels of these effects given above represent all levels of Interest In the investlga-

tlon. For example, the effect of testlng technIque has as particular levels code

readlng, functional testing, and structural testing; these particular testlng tech-

nlques are the only ones under comparlson In this st udy. The effect of the par-

49

ticular subjects that participated In this study requires a little different Interpre-

tation. The subjects examined In the study were random samples of program-

mers from the large population of programmers at each of the levels of exper-

tise. Thus, the effect of the subjects on the various dependent variables Is a

random variable, and this effect therefore is called a random effect. If the sam-

ples examined are truly representative of the population of subjects at each ex-

pertise level, the Inferences from the analysis can then be generalized across the

whole population of subjects at each expertise level, not just across the particu-

lar subjects In the sample chosen. Since this analysis of variance model contains

both fixed and random effects, It Is called a mixed model. The actual AINOVA

model for the design appearing in Figure 11 Is given below.

Tijk = /2 + ai + 3j + -1k + 6k1 + a,3ii + yijk + 3 -yjk + a.Vijk +

'" €ijkl

where

Tijkl Is the observed response from subject I of experience level k using
testing technique I on program j

M is the overall mean response
" i Is the main effect of testlng technique I (I = 1,2.3)

3i Is the main effect of program j (j = 1, 3, 4)
- is the main effect of expertise level k (k = 1, 2. 3)

bkl Is the random effect of subject I within expertise level k, a random
variable (I = 1, 2, ..., 32; k = 1, 2, 3)

3ij Is the Interaction effect of testing technique I with program j (I = 1,

2, 3; j = 1, 3, 4)
-a*ik is the interaction effect of testing technique I with expertise level k?

(I = 1, 2, 3; k 1 1. 2, 3)
,3-,k Is the Interaction effect of program j with expertise level k (= 1..

3. 4: k = 1, 2, 3)
;a. 3 'k,, Is the interaction effect of testlng technique I with program J with

50

experience level k 0 1, 2, 3; j 1, 3, 4; k 1,2, 3)

eijkl Is the experimental error for each observation, a random variable

The F tests of hypotheses on all the fixed effects mentioned above use the

error (residual) mean square In the denominator, except for the test of the ex-

pertise level effect. The expected mean square for the expertise level effect con-

tains a component for the actual variance of subjects within expertise level. In

order to select the appropriate error term for the denominator of the expertise

level F test, the mean square for the effect of subjects nested within expertise

level Is chosen. The parameters for the random effect of subjects within exper-

tise level are assumed to be drawn from a normally distributed random process

with mean zero and common variance. The experimental error terms are as-

sumed to have mean zero and common variance.

The fractional factorial design applied In the first two phases of the

analysis differed slightly from the one presented above for the third phase. 3 In"

the third phase of the study, programs P,, P,, and P4 were tested by subjects

In three levels of expertise. In both phases one and two, there were only sub-

jects from the levels of Intermediate and junior expertise. In phase one, pro-

grams PF, P9, and P were tested. In phase two, the programs tested were P

Pe, and P 4 . The only modifications necessary to the above explanation for

phases one and two are 1) ellmlnatlng the advanced expertise level, 2) changlng

3 Although the data from all the phases can be analyzed together, the

number of empty cells resulting from not having all three experience levels and

all four programs In all phases limits the number of parameters that can be es-

timated and causes non-unique Type PV partial sums (,I' squares.

51

the program P subscripts appropriately, and 3) leaving out the three way in-

teraction term in phase two, because of the reduced number of subjects. In all

three of the phases, all subjects used each of the three techniques and tested

each of the three programs for that phase. Also, within all three phases, all pos-

sible combinations of expertise level, testing techniques, and programs occurred.

The order of presentation of the testing techniques was randomized among

the subjects In each level of expertise in each phase of the study. However, the

integrity of the results would have suffered If each of the programs In a given

phase was tested at different times by different subjects. Note that each of the

testing sessions took place on a different day because of the amount of effort re-

quired. If different programs would have been tested on different days, any dis-

cussion about the programs among subjects between testlng sessions would have

affected the future performance of others. Therefore, all subjects in a phase

tested the same program on the same day. The actual order of program presen-

tation was the order In which the programs are listed in the previous paragraph.

4.1.2.4. Experimental Operation

Each of the three phases were broken Into five distinct pieces: training,.

three testing sessions, and a follow-up session. All groups of subjects were ex-

posed to a similar amount of training on the testing techniques before the study

began. As mentioned earlier, the University of Maryland subjects were enrolled

in the "Software Design and Development" course. and the NASA/CSC sub-

jects were given a four-hour tutorial. Background Information on the subjects

52

A

was captured through a questionnaire. Elementary exercises followed by a

pretest covering all techniques were administered to all subjects after the train- "

Ing and before the testing sessions. Reasonable effort on the part of the Unlver-

slty of Maryland subjects was enforced by their being graded on the work and

by their needing to use the techniques in a major class project. Reasonable

effort on the part of the NASA/CSC subjects was certain because of their desire

for the study's outcome to Improve their software testing environment. All sub-

jects groups were judged highly motivated during the study. The subjects were

all familiar with the editors, terminals, machines, and the programs' Implemen-

tation language.

The Individuals were requested to use the three testing techniques to the

best of their ability. Every subject participated in all three testing sessions of

hls/her phase, using all techniques but each on a separate program. The Indivi-

duals using code reading were each given the specification for the program and

Its source code. They were then asked to apply the methods of code reading by

stepwise abstraction to detect discrepancies between the program's abstracted

function and the speclflcatlon. The functional testerc were each given a

speclflcatlon and the ability to execute the program. They were asked to per-

form equivalence partitioning and boundary value analysis to select a set of test

data for the program. Then they executed the program on this collection of

test data, and inconsistencies between what the program actually performed

and what they though the speclflcatlon sald It should perform were noted. The

structural testers were given the source code for the program, the ablilty to exe-

53

.. :.......... .. . _..o-

cute It, and a description of the Input format for the program. The structural

testers were asked to examine the source and generate a set of test cases that

cumulatively execute 1009 of the program's statements. When the subjects

* were applylng an on-line technique, they generated and executed their own test

data; no test data sets were provided. The programs were Invoked through a

test driver that supported the use the of multiple Input data sets. This test

driver, unbeknown to the subjects, drained off the input cases submitted to the

program for the experimenter's later analysis; the programs could only be ac-

cessed through a test driver.

A structural coverage tool calculated the actual statement coverage of the

test set and which statements were left unexecuted for the structural testers.

After the structural testers generated a collection of test data that met (or al-

most met) the 100% coverage criteria, no further execution of the program or

reference to the source code was allowed. They retained the program's output

from the test cases they had generated. These testers were then provided with

the program's specIfIcatlon. Now that they knew what the program was Intend-

ed to do, they were asked to contrast the program's specification with the

behavior of the program on the test data they derived. This scenarlo for the

structural testers was necessary so that "observed" faults could be compared.

At the end of each of the testing sessions, the subjects were asked to give a

reasonable estimate of the amount of time spent detecting faults with a given

testing technique. The University of Maryland subjects were assured that this

had nothing to with the grading of the work. There seemed to be little incen-

54

- -m

tive for the subjects In any of the groups not to be truthful. At the completion

of each testing session, the NASA/CSC subjects were also asked what percen-

tage of the faults In the program that they thought were uncovered. After all

three testing sessions In a given phase were completed, the subjects were re-

quested to critique and evaluate the three testing techniques regarding their un-

derstandablilty, naturalness, and effectiveness. The University of Maryland sub-

jects submitted a written critique, while a two hour debriefing forum was con-

ducted for the NASA/CSC Individuals. In addition to obtaining the Impres-

sions of the Individuals, these follow-up procedures gave an understanding of

how well the subjects were comprehending and applying the methods. These

final sessions also afforded the participants an opportunity to comment on any

particular problems they had with the techniques or In applylng them to the

given programs.

4.1.3. Data Analysis

The analysis of the data collected from the various phases of the expert-

m; nt Is presented according to the goal and question framework discussed ear-

lier.

4.1.3.1. Fault Detection Effectiveness

The first goal area addresses the fault detection effectiveness of each of the

techniques. Figure i'- presents a summary of the measures that were examined

to pursue this gol area. A brief description of each measure Is as follows (,)

means only releant for on-line testIng. a) Faults letected - the number of

- 55 -

,.-) -.- ,'-, ,--'.i :-.:: :: : 2 - -: : 9 -. : - .-) - . , ,

- " - - - m k - M. . . - ." _ -

faults detected by a subject applying a given testing technique on a given pro-

gram. b) % Faults detected - the percentage of a program's raults that a sub-

ject detected by applying a testing technique to the program. c) # Faults ob-

servable ()-the number of faults that were observable from the program's

behavior given the Input data submitted. d) 97 Faults observable ()-the per-

centage of a program's faults that were observable from the program's behavior

given the Input data submitted. e) 97oDetected/observable ()-the percentage

of faults observable from the program's behavior on the given Input set that

were actually observed by a subject. f) %7 Faults felt found - a subject's estl-

mate of the percentage of a program's faults that he/she thought were detected

by his/her testing. g) Maximum statement coveragre ()-the maximum percen-

tage of a program's statements that were executed In a set of test cases.

4.1.3.1.1. Data Distributions

The actual distributioni of the number of faults observed by the subjects

appears In Figure 13, broken down by phase. From Figures 12 and 13, the large

- . variation In performance among the subjects Is clearly seen. The mean number

of faults detected by the subjects Is displayed In Figure 14, broken down by

technique, program, expertise level, and phase.

56

Figure 12.
Overall summary of detection effectiveness data.
Note: some data pertain to only on-line techniques (,), and some
data were collected only In certain phases.

Phase #Subj. Measure Mean SD Min. Max.

1 29 # Faults detected 3.94 1.82 0.00 7.00

1 29 % Faults detected 54.78 2d.11 0.00 100.00

1 29(*) # Faults observable 5.38 1.51 3.00 8.00
1 29(*) % Faults observable 74.59 20.54 33.33 100.00

1 29(*) % Detected/observable 70.99 24.01 0.00 100.00

2 13 # Faults detected 3.28 1.96 0.00 7.00

2 13 % Faults detected 39.53 27.25 0.00 100.00
3 32 # Faults detected 4.27 1.86 0.00 8.00

3 32 % Faults detected 49.82 27.44 0.00 100.00

3 32 % Faults felt found 75.10 24.07 0.00 100.00

3 32(,) # Faults observable 5.61 1.52 3.00 9.00

3 32(*) % Faults observable 62.11 18.36 25.00 100.00
3 32(*) % Detected/observable 69.67 27.14 0.00 100.00

3 32(*) Max. % stmt. covered 97.02 7.83 46.00 100.00
Ave 74 Faults detected 3.97 1.88 0.00 8.00

Ave 74 % Faults detected 49.96 27.29 0.00 100.00

Ave 61(*) # Faults observable 5.5 1.5 3.00 9.00

Ave 61(*) % Faults observable 68.0 20.3 25.0 100.0

Ave 61(*) % Detected/observable 70.3 25.6 0.0 100.0

57 I

-. Li

Figure 13. Distribution of the number of faults detected broken down by phase. Key: code
readers (C). functional testers (F). and structural testers (S).

S
S S
S Phase 1: S Phase 3:
S 87 observations S 96 observations
S S
S F
S F
S S F
F S F
F S F S

S F S S F S
S F S S F S S
S F S S S F F S =

S F S F S F S F F
S C S F S F S F F
S C F S S F S S F F F C
S C F S S F S S F F F C
F C F F S F S F F F F C
F C F F F C S F F F C C
F C F F F C S S F C F C C

S F C F F F C S S C C C C C
S C C C C F C S F C C C C C
C C C C C C C S S C C C C C C

S C C C C C C C C F C C C C C C C

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

S S Phase 2:
S S 39 observations
S S S

S S F S
C S F F S F

S C F F C F F
F C F F C F F
C C C C C C C C

0 1 2 3 4 5 6 7 8 9

58

Figure 14.

Overall summary for number or faults detected.

Phase

1 2 3

Effect Level Mean(SD) Mean(SD) Mean(SD)

Technique Reading 4.10 (1.93) 3.00 (2.20) 5.09 (1.92)

Functional 4.45 (1.70) 3.77 (1.83) 4.47 (1.34)

Structural 3.28 (1.67) 3.08 (1.89) 3.25 (1.80)

Program Formatter 4.07 (1.62) 3.23 (2.20) 4.19 (1.73)

Plotter 3.48 (1.45) 3.31 (1.97) . (.)

Data type 4.28 (2.25) . .) 5.22 (1.75)

Database . (.) 3.31 (1.84) 3.41 (1.66)

Expertise Junior 3.88 (1.89) 3.04 (2.07) 3.90 (1.83)

Intermed. 4.07 (1.69) 3.83 (1.64) 4.18 (1.99)

Advanced . (.) . (.) 5.00 (1.53)

4.1.3.1.2. Number of Faults Detected

The first question under this goal area asks which of the testing techniques

detected the most faults In the programs. The overall F-test of the techniques

detecting an equal number of faults In the programs Is rejected In the first and

third phases of the study (a<.024 and a<.0001, respectively; not rejected In

phase two, a>.05). Recall that the phase three data was collected from 32

NASA/CSC subjects, and the phase one data was from 29 University of -Mary-

land subjects. With the phase three data, the contrast of "reading - 0 5 *

(functional + structural)" estimates that the technique of code reading by step-

wise abstraction detected 1.2-4 more faults per program than dId either of the

59

other techniques (a<.0001, c.l. 0.73 - 1,75). Note that code reading performed

well even though the professional subjects' primary experience was with func-

tional testing. Also with the phase three data, the contrast of "functional -

structural" estimates that the technique of functional testing detected 1.11 more

faults per program than did structural testing (a<.0007, c.l. 0.52 - 1.70). In

the phase one data, the contrast of "0.5 * (reading + functional) - structural"

estimates that the technique of structural testing detected 1.00 fault less per

program than did either reading or functional testing (a<.0065, c.i. 0.31 -

1.69). In the phase one data, the contrast of "reading - functional" was not

statistically different from zero (a>.05). The poor performance of structural

testing across the phases suggests the Inadequacy of using statement coverage

criteria. The above pairs of contrasts were chosen because they are linearly in-

dependent.

4.1.3.1.3. Percentage of Faults Detected

Since the programs tested each had a different number of faults, a question

In the earlier goal/questlon framework asks which technique detected the

createst percentage of faults In the programs. The order of performance of the

techniques Is the same as above when the percentage of the programs' faults

detected are compared. The overall F-tests for phases one and three were re-

jected as before (ca<.037 and o<.0001 respectively; not rejected In phase two.

The probably of Type I error is reported, the probability of erroneously re-
Jecting the null hypothesis. The abbreviation 'c.i." stands for 95% confIdence

Interval.

60

-. ,

a>.05). Applying the same contrasts as above: a) in phase three, reading.

detected 16.0% more faults per program than did the other techniques

(a<.0001, c.l. 9.9 - 22.1), and functional detected 11.2% more faults than did

structural (a<.003, c.l. 4.1 - 18.3); b) In phase one, structural detected 13.2%o

fewer of a program's faults than did the other methods (a<.011, c.l. 3.5 - 22.9),

and reading and functional were not statistically different as before.

4.1.3.1.4. Dependence on Software Type

Another question In this goal area queries whether the number or percen-

tage of faults detected depends on the program being tested. The overall F-test

that the number of faults detected Is not program dependent Is rejected only In

the phase three data (a<.0001). Applying Tukey's multiple comparison on the

phase three data reveals that the most faults were detected In the abstract data

type, the second most In the text formatter, and the least number of faults were

found In the database maintainer (simultaneous a<.05). When the percentage

of faults found in a program Is considered, however, the overall F-tests for the

three phases are all rejected (a< 027, a<.01, and a<.0001 In respective ord-

er). Tukey's multiple comparison yields the following orderings on the pro-

grams (all simultaneous a<.05). 'In the phase one data, the ordering was (data

type - plotter) > text formatter; that Is, a higher percentage of faults were

detected In either the abstract data type or the plotter than were found In the

text formatter: there was no difference between the abstract data type and the

plotter in the percentage found. In the phase two data. the orderlng of percen-

61

tage of faults detected was plotter > (text formatter database maintainer).

In the phase three data, the ordering of percentage of faults found In the pro-

grams was the same as the number of faults found, abstract data type > text

formatter > database maintainer. Summarizing the effect of the type of soft-

ware on the percentage of faults observed: 1) the programs with the highest per-

centage of their faults detected were the abstract data type and the mathemati-

cal plotter, the percentage detected between these two was not statistically

different; 2) the programs with the lowest percentage of their faults detected

were the text formatter and the database maintainer; the percentage detected

between these two was not statistically different In the phase two data, but a

higher percentage of faults in the text formatter was detected In the phase three

data.

4.1.3.1.5. Observable vs. Observed Faults

One evaluation criteria of the success of a software testing session Is the

number of faults detected. An evaluation criteria of the particular test data

generated, however, Is the ability of the test data to reveal faults In the pro-

gram. A test data set's ability to uncover faults In a program can be measured

by the number or percentage of a program's faults that are made observable

from execution on that Input. Distinguishing the faults observable In a program

from the faults actually observed by a tester highlights the differences In the ac-

tivities of' test data generatlon and program behavior examination.A.s shown In

Figure i1. the average number of the programs' faults observable was 6S.0 7

62

j..........

P4.

when individuals were either functional testing or structurally testing. Of

course, with a nonexecution-based technique such as code reading, 100% of the

faults are observable. Test data generated by subjects using the technique of

functional testing resulted in 1.4 more observable faults (a<.0002, c.I. 0.79 -

2.01) than did the use of structural testing In phase one of the study; the per-

centage difference of functional over structural was estimated at 20.0%

(ce<.0002, c.l. 11.2 - 28.8). The techniques did not dIffer In these two measures

in the third phase of the study. However, just considering the faults that were

observable from the submitted test data, functional testers detected 18.5% more .-

of these observable faults than did structural testers in the phase three data

(ce<.0016, c.l. 8.9 - 28.1); they did not differ In the phase one data. Note that

all faults in the programs could be observed In the programs' output given the

proper Input data. When using the on-line techniques of functional and struc-

tural testing, subjects detected 70.3% of the faults observable In the program's

output. In order to conduct a successful testing session, faults In a program

must be both revealed and subsequently observed.

4.1.3.1.6. Dependence on Program Coverage

Another measure of the ability of a test set to reveal a program's faults Is

the percentage of a program's statements that are executed by the test set. The

average maximum statement coverage achieved by the functional and structural

testers was 97.0c. The maximum statement coverage from the submitted test

data was not statistically different between the functional and structural testers

63

"" " ' ' ' " " "' " "i " ° " .- -- -" " ; ," Z ,f " 2 _ ',' ' ' ' -'J ' " ," ' ' ' ' " ' ' -' ' • ' ' -' .' ," o " "

'.(>.05). Also, there was no correlation between maximum statement coverage

achieved and either number or percentage of faults found (a>.05).

4.1.3.1.7. Dependence on Programmer Expertise

A final question In this goal area concerns the contribution of programmer

expertise to fault detection effectiveness. In the phase three data from the

NASA/CSC professional environment, subjects of advanced expertise detected

more faults than did either the subjects of Intermediate or junior expertise

(a<.05). When the percentage of faults detected Is compared, however, the ad-

vanced subjects performed better than the junior subjects (a<.05), but were

not statistically different from the Intermediate subjects (ak>.05). The Inter-

mediate and junior subjects were not statistically different In any of the three

phases of the study In terms of number or percentage faults observed. When

several subject background attributes were correlated with the number of faults

found, total years of professional experience had a minor relationship (Pearson

R = .22, a<.05). Correspondence of performance with background aspects was

examined across all observations, and within each of the phases, Including prevl-

ous academic performance for the University of Maryland subjects. Other than

the above, no relationships were found.

4.1.3.1.8. Accuracy of Self-Estimates

Recall that the NASA/CSC subjects In the phase three data estimated, at

the completion of a testing session, the percentage of a program's faults they

thought they had uncovered. This estimation of the number of faults un-

64

covered correlated reasonably well wlth the actual percentage of faults detected

(R = .57, a<.0001). Investigating further, Individuals using the different tech-

niques were able to give better estimates: code readers gave the best estimates

(R - .79, a<.0001), structural testers gave the second best estimates (R - .57,

a<.0007), and functional testers gave the worst estimates (no correlation,

U>.05). This last observation suggests that the code readers were more certain

of the effectiveness they had In revealing faults in the programs.

4.1.3.1.9. Dependence on Interactions

There were few significant interactions between the main effects of testing

technique, program, and expertise level. In the phase two data, there was an In-

teraction between testing technique and program In both the number and per-

centage of faults found (a<.0013, &<.0014 respectively). The effectiveness of

code reading Increased on the text formatter. In the phase three data, there

was a slight three-way Interaction between testing technique, program, and ex-

pertise level for both the number and percentage of faults found (a<.05, a< 04

respectively).

4.1.3.1.10. Summary of Fault Detection Effectiveness

Summarlzlng the major results or the comparison of fault detection

effectiveness: 1) In the phase three data, code reading detected a greater number

and percentage of faults than the other methods, with functional detecting more

than structural: 2) In the phase one data. code readling rand functlonal were

equally effective, while structural was inferlor to both - there were no diiferences

65

among the three techniques In phase two; 3) the number of faults observed

depends on the type of software: the most faults were detected In the abstract

data type and the mathematical plotter, the second most In the text formatter,

and (In the case of the phase three data) the least were found In the database

maIntainer; 4) functionally generated test data revealed more observable faults

than did structurally generated test data In phase one, but not In phase three;

5) subjects of intermediate and junior expertise were equally effective in detect-

Ing faults, while advanced subjects found a greater number of faults than did el-

ther group; and 6) self-estimates of faults detected were most accurate from

subjects applying code reading, followed by those doing structural testing, with

estimates from persons functionally testing having no relationship.

4.1.3.2. Fault Detection Cost

The second goal area examines the fault detection cost of each of the tech-

nlques. Figure 15 presents a summary of the measures that were examined to

Investigate this goal area. A brief description of each measure Is as follows - (,)

means only relevant for on-line testing. a) # Faults / hour - the number of

faults detected by a subject applying a given technique normalized by the effort

!n hours required, called the fault detection rate. b) Detection time - the total

number of hours that a subject spent In testing a program using a technique. c)

Cpu-tlme (,) - the cpu-tlme In seconds used during the testing sesslon. d) Nor-

malized cpu-time () - the cpu-time in seconds used during the testing session.

66

-) :,- - . :: •.. ..: : ,- c .-" .. . , , .-. : , ,. i: , ,: -; _ ,- Z : _

* - T.... .. - .,.

normalized by a factor for machine speed. 5 e) Connect time (.) - the number of

minutes that a Individual spent on-line while testing a program. f) # Program

runs (,) - the number of executions of the program test driver; note that the

driver supported multiple sets of Input data. All of the on-line statistics were

monitored by the operating systems of the machines.

4.1.3.2.1. Data Distributions

The actual distribution of the fault detection rates for the subjects appears

In Figure 16, broken down by phase. Once again, note the many-to-one

differential In subject performance. Figure 17 displays the mean fault detection

rate for the subjects, broken down by technique, program, expertise level, and

phase.

In t,,,, phase three data, testing, itas done on both a VA i'0~dan
113% *341. A. 5si gu.ested by benchmark comparisons Chiirch. -rt VAX
cpu-timnes were idivIded by 1.6 and the IBI cpu-tim es ,w're d11%-Med h'; 0.9.

67

7° 7

-7 .-..

Figure 15.
Overall summary of fault detection cost data.
Note: some data pertaln to only on-line tetinlques (,), and some
data were collected only In certaln phases.

Phase #Subj. Measure Mean SD Mn. lax.

1 29 # Faults / hour 1.63 1.28 0.00 7.00

1 29 Detection time (hrs) 3.33 2.09 0.75 10.00

2 13 # Faults / hour 0.99 0.81 0.00 3.00

2 13 Detection time (hrs) 4.70 3.02 1.00 14.00

3 32 # Faults / hour 2.33 2.28 0.00 14.00

3 32 Detection time (hrs) 2.75 1.57 0.50 7.25

3 32(*) Cpu-time (sec) 45.2 56.1 3.0 283.0

3 32(*) Cpu-tlme (sec; norm.) 38.5 51.7 2.9 314.4

3 32(*) Connect time (min) 65.83 50.21 3.50 214.00

3 32(*) program runs 5.45 5.00 1.00 24.00

Ave 74 # Faults / hour 1.82 1.80 0.00 14.00

Ave 74 Detection time (hrs) 3.32 2.19 0.50 14.00

68

-' [I

Figure 16. Distribution of the fault detection rate (#faults detected per hour) broken down
by phase. Key: code readers (C). functional testers (F). and structural testers (S.

S
S
S Phase 1 Phase 3:

SS 87 observations 96 observations
SS S
SS S
SS SS .
SS SS -

SS SF
FSS SF
FFS SFS
FFS SFS
FFSS FFS S
FFSS FFS S
FFFS SFFF S
CFFF SFCF F
CFFF SFCF F S
CCFF S SSFCFS.F S

FCC F SFO2CSFS S
CCCF F S FFOCFFF S
CCCCCCFSSF SCFCx- CC S C

SCCCFFCC C-C C OCXXCFOCCF CFC C C CC C

0 5 10 15 0 5 10 15

S Phase 2
F 39 observations
F

SF
SF S
FF S
CC S
cC S
SCCSFF
FCCSCFS S
OOCSCFF F

---- -- -- -- -- -- -- -- - --------

0 5 10 iS

69

Figure 17.
Overall summary for fault detection rate (# faults

detected per hour).

Phase

1 2 3

Effect Level Mean(SD) Mean(SD) Mean(SD)

Technique Reading 1.90 (1.83) 0.56 (0.46) 3.33 (3.42)

Functional 1.58 (0.90) 1.22 (0.91) 1.84 (1.06)

Structural 1.40 (0.87) 1.18 (0.84) 1.82 (1.24)

Program Formatter 1.60 (1.39) 0.98 (0.67) 2.15 (1.10)

Plotter 1.19 (0.83) 0.92 (0.71) . (.)

Data type 2.09 (1.42) . G) 3.70 (3.26)

Database . 1.05 (1.04) 1.14 (0.79)

Expertise Junior 1.38 (0.97) 1.00 (0.85) 2.14 (2.48)

Intermed. 2.22 (1.66) 0.96 (0.74) 2.53 (2.48)

Advanced . (.) . (.) 2.36 (1.61)

4.1,3.2.2. Fault Detection Rite and Total Time

The first question In this goal area asks which testing technique had the

highest fault detection rate. The overall F-test of the techniques' having the

same fault detection rate was rejected In the phase three data (aL<.0014), but

not In the other two phases (c>.05). As before, the two contrasts of "reading -

0.5 * (functional + structural)" and "functional - structural" were examined to

detect differences among the techniques. The technique of code reading was es-

timated at detecting 1.49 more faults per hour than did the other techniques In

the phase three data (a <.0003, c.l. 0.75 - 2.23). The techniques of functional

and structural testing were not statistically different (a> .05). Comparing he

total time spent In fault detection, the techniques were not statistically different

70

. ..

in the phase two and three data; the overall F-test for the phase one data was

rejected (a<.013). In the phase one data, structural testers spent an estimated

1.08 hours less testing than did the other techniques (a<.004, c.l. 0.39 - 1.78),

while code readers were not statistically different from functional testers. Recall

that In phase one, the structural testers observed both a lower number and per-

centage of the programs' faults than did the other techniques.

4.1.3.2.3. Dependence on Software Type

Another question in this area focuses on how fault detection rate depends

on software type. The overall F-test that the detection rate is the same for the

programs is rejected In the phase one and phase three data (a<.01 and

a<.0001 respectively); the detection rate among the programs was not statlstl-

cally dIfferent In phase two. Applying Tukey's multiple comparisons on the

phase one data finds that the fault detection rate was greater on the abstract

data type than on the plotter, while there was no difference either between the

abstract data type and the text formatter or between the text formatter and the

plotter (simultaneous a<.05). In the phase three data, the fault detection rate

was higher in the abstract data type than It was for the text formatter and the

database maintalner, with the text formatter and the database mlalntaln -r not

being statistically different (simultaneous a<.05). The overall effort spent in

fault detection was different among the programs In phases one and three

(a<.012 and ce<.0001 respectively), while thpre was no difference In phase two.

In phase one. more effort was spent testing the platter than the abstract datta

71

,. , ,, '- , . ' ... , , . . .

- ._-.-- -. -

type, while there was no statistical difference either between the plotter and the

text formatter or between the text formatter and the abstract data type (slmul- a

taneous a<.05). In phase three, more time was spent testing the database

maintainer than was spent on either the text formatter or on the abstract data

type, with the text formatter not differing from the abstract data type (slmul-

taneous a<.05). Summarizing the dependence of fault detection cost on soft-

ware type, 1) the abstract data type had a higher detection rate and less total

detection effort than did either the plotter or the database maintainer, the latter

two were not different in either detection rate or total detection time; 2) the

text formatter and the plotter did not differ In fault detection rate or total

detection effort; 3) the text formatter and the database maintainer did not differ

In fault detection rate overall and did not dIffer In total detection effort in phase

two, but the database maintainer had a higher total detection effort In phase

three; 4) the text formatter and the abstract data type did not differ in total

detection effort overall and did not differ In fault detection rate In phase one,

but the abstract data type had a higher detection rate In phase three.

4.1.3.2.4. Computer Costs

In addition to the effort spent by Individuals In software testlng, on-Ine,

methods Incur machine costs. The machine cost me!sures of cpu-time, connect

time, and the number of runs were compared across the on-line technIques of

functlonal and structural testlng In phase three of the study. A nonexecutlon-

based technique such as code readlng, of course, incurs no machine time c.sts.

72.t4-

When the machine speeds are normalized (see measure definitions above), the

technique of functional testing used 28.0 more seconds of cpu-tlme than did the %

technique of structural testing (a<.018, c.l. 7.0 - 45.0). The estimate of the

difference is 29.6 seconds when the cpu-tlmes are not normalized (a<.012, c.i.

9.0 - 50.2). Individuals using functional testing used 28.4 more minutes of con-

nect time than did those using structural testing (ak<.004, c.l. 11.7 - 45.1). The

number of computer runs of a program's test driver was not different between

the two techniques (&>.05). These results suggest that individuals using func-

tional testing spent more time on-line and used more cpu-tlme per computer run

than did those structurally testing.

4.1.3.2.5. Dependence on Programmer Expertise

The relation of programmer expertise to cost of fault detection Is another

question in this goal section. The expertise level of the subjects had no relation

to the fault detection rate In phases two and three (a>.05 for both F-tests).

Recall that phase three of the study used 32 professional subjects with all three

levels of computer science expertise. In phase one, however, the intermediate

subjects detected faults at a faster rate than did the junior subjects (a<.005;.

The total effort spent In fault detection was not different among the expertise

levels In any of the phases (a>.05 for all three F-tests). When all 74 subjects

are considered, years of professional experience correlates positively with fault

detection rate (R - .41, a<.0002) and correlates slightly negatively with total

detection time (R = -.25, a<.03). These last two observations suggest that

73

persons with more years of professional experience detected the faults faster and

spent less total time doing so. Several other subject background measures

showed no relationship with fault detectlon rate or total detection time

(a<.05). Background measures were examined across all subjects and within

the groups of NASA/CSC subjects and University of Maryland subjects.

4.1.3.2.6. Dependence on Inceractions

There were few significant Interactions between the main effects of testing

technique, program, and expertise level. There was an Interaction between test-

Ing technique and software type In terms of fault detection rate and total detec-

tion cost for the phase three data (a<.003 and a<.007 respectively). Subjects

using code reading on the abstract data type had an Increased fault detection

rate and a decreased total detection time.

4.1.3.2.7. Relationships Between Fault Detection Effectiveness and

Cost

There were several correlations between fault detection cost measures and

performance measures. Fault detection rate correlated overall with number of

faults detected (R = .48, ,a<.0001), percentage of faults found (R = .48.

a< .0001), and tctaI detection time (R -. 53, c<.0001). but not wlth normal-

Ized cpu-tlme, raw cpu-tlme, connect time, or number of computer runs

(a>.05). Total detection time correlated with normalIzed cpu-tlme (R = .36.

a<.04) and raw cpu-tlme (R .37, a<.04), but not w~th connect time.

number of runs, number of faults detected, or percentage of faults detected.

74

.. - "4~

The number of faults detected In the programs correlated with the amount of

machine resources used: normalized cpu-tlme (R = .47, a<.007), raw cpu-tlme

(R = .52, a<.002), and connect time (R = .49, c<.003), but not with the

number of computer runs (a>.05). The correlations for percentage of faults

detected with machine resources used were similar. Although most of these

correlations are minor, they suggest that 1) the higher the fault detection rate,

the more faults found and the less time spent In fault detection; 2) fault detec-

tion rate had no relationship with use of machine resources; 3) spending more

time In detecting faults had no relationship with the amount of faults detected;

and 4) the more cpu-time and connect time used, the more faults found.

4.1.3.2.8. Summary of Fault Detection Cost

Summarizing the major results of the comparison of fault detection cost: 1)

in the phase three data, code reading had a higher fault detection rate than the

other methods, with no difference between functional testing and structural test-

ing; 2) in the phase one and two data, the three techniques were not different in

fault detection rate; 3) in the phase two and three data, total detection effort

was not different among the techniques, but in phase one less effort was spent

ror structural testing than for the other techniques, while reacllng and functional

were not different; 4) fault detection rate and total effort In detection depended

on the type of software: the abstract data type had the highest detection rate

and lowest total detection effort, the plotter and the database maintainer had

the lowest detection rate and the hlghest total detection etort. and the text for-

7'5

matter was somewhere In between depending on the phase; 5) functional testing

used more cpu-tlme and connect time than did structural testing, but they were

not different In the number of runs; 6) In phases two and three, subjects across

expertise levels were not different In fault detection rate or total detection time,

In phase one Intermediate subjects had a higher detection rate; and 7) there was

a moderate correlation between fault detection rate and years of professional ex-

perlence across all subjects.

4.1.3.3. Characterization of Faults Detected

The third goal area focuses on determining what classes of faults are

detected by the different techniques. In the earlier section on the faults In the

software, the faults were characterized by two different classification schemes:

omission or commission, and Initialization, control, data, computation, Interface,

or cosmetic. The faults detected across all three study phases are broken down

by the two fault classification schemes In Figure 18. Tbe entries In the figure

are the average percentage (with standard deviations) of faults In a given class

observed when a particular technique was being used. Note that when a subject

tested a program that had no faults In a given class, he/she was excluded from

the calculatlon of this average.

76

.- 76

. . . °i
. . . . - . .

.1°

Figure 18. Characterization of the faults detected. _.

Code Functional Structural Overall
Reading Testing Testlng _-_

Omission 55.6 (40.1) 61.0 (39.5) 39.2 (41.1) 52.0 (41.3)

Commission 54.3 (32.1) 53.5 (25.4) 44.3 (26.6) 50.7 (28.4)

Total 54.1 (29.2) 54.8 (24.5) 41.2 (26.1) 50.0 (27.3)

Initial. 84.8 (40.3) 75.0 (36.1) 46.2 (39.8) 81.5 (40.2)

Control 42.8 (36.0) 66.7 (34.9) 48.8 (36.5) 52.8 (37.2)

Data 20.7 (36.6) 28.3 (44.9) 26.8 (41.9) 25.3 (41.0)

Computat. 70.9 (37.0) 64.2 (40.8) 58.8 (43.5) 64.6 (40.6)

Interface 46.7 (38.5) 30.7 (33.5) 24.6 (29.4) 34.1 (35.1)

Cosmetic 16.7 (38.1) 8.3 (28.2) 7.7 (27.2) 10.8 (31.3)

Total 54.1 (29.2) 54.6 (24.5) 41.2 (26.1) 50.0 (27.3)

4.1.3.3.1. Omission vs. Commission Classification

When the faults are partitioned according to the omlssion/commission

scheme, there Is a distinction among the techniques. Both code readers and

functional testers observed more omission faults than did structural testers

(a<.001), with code readers and functional testers not being different, (a> 05).

Since a fault of omission occurs as a result of some segment of code being left,

out, you would not expect structurally generated test data to find such faults

In fact, 44% 0'of the subjects applying structural testing found zero faults of ome-

isslon when testlng a program.

4.1.3.3.2. Six-Part Fault Classification

\Vhen the faults are divided according to the second "ault cl-sliflcat on

scheme, several differences are apparent. Both code reading and functlonal test-

Ing found more initialization faults than did structural testing ((<.05). ",Ivth1

-.. 77

S am

code reading and functional testing not being different (c>.05). Code reading

detected more Interface faults than did either of the other methods (Ce<.01),

with no difference between functional and structural testing (a>.05). This sug-

gests that the code reading process of abstracting and composing program func-

tions across modules must be an effective technique for finding interface faults.

Functional testing detected more control faults than did either of the other

methods (o<.01), with code reading and structural testing not being different

(a>.05). Recall that the structural test data generation criteria examined is

based on determining the execution paths In a program and deriving test data

that execute 100% of the program's statements. One would expect that more

control path faults would be found by such a technique. However, structural

testing did not do as well as functional testing In this fault class. The technique

of code reading found more computation faults than did structural testing

(a<.05), with functional testing not being different from either of the other two

methods (a>.05). The three techniques were not statistically different In the

percentage of faults they detected In either the data or cosmetic fault classes

(a> .'05 for both).

4.1.3.3.3. Observable Fault Classification

Figure 19 displays the average percentage (with standard deviatlons) of

faults from each class that were observable from the test data submitted, yet

were not reported by the tester.6 The two on-line techniques of functlonal and

r The standard deviations presented In the flgure are high because of the

several Instances In which all observable faults were reported.

78

structural testing were not different In any of the faults classes (Q>.05). Note

that there was only one fault In the cosmetic class.

Figure 19. Characterization of the faults observable, but not reported.

Functional Structural Overall

Testing Testing

Omission 15.7 (25.4) 21.3 (31.8) 18.5 (28.8)
Commission 19.1 (20.0) 20.1 (16.8) 19.6 (18.3)

Total 18.1 (17.8) i9.9 (16.8) 19.0 (17.3)
Initial. 5.0 (15.4) 14.3 (32.2) 9.8 (25.5)
Control 20.3 (30.6) 21.1 (31.4) 20.7 (30.8)

Data 28.6 (43.5) 7.5 (24.5) 18.3 (36.7)

Computat. 16.0 (31.3) 20.1 (37.6) 18.0 (34.5)

Interface 16.1 (20.0) 20.3 (21.5) 18.2 (20.8)

Cosmetic 60.0 (50.3) 85.7 (35.9) 73.2 (44.9)

Total 18.1 (17.8) 19.9 (16.8) 19.0 (17.3)

4.1.3.3.4. Summary of Characterization of Faults Detected

Summarizing the major results of the comparison of classes of faults detect-

ed: 1) code reading and functional testing both detected more omission faults

and Initialization faults than did structural testing; 2) code reading detected

more Interface faults than did the other methods; 3) functional testing detected

more control faults than did the other methods; 4) code reading detected more

computation faults than did structural testing; and 5) the on-line techniques of

functional and structural testing were not different In any 21asses of faults ob-

servable but not reported.

79

o~-,. ... '# .". , . . .-- - .'- , . "- , , . - .- . ." . .-"-.

4.1.4. Conclusions

This study compares the strategies of code reading, functional testing, and

structural testing across three data sets In three different aspects of software

testing: fault detection effectiveness, fault detection cost, and classes of faults

detected. Each of the three testing techniques showed merit in this evaluation.

The Investigation was Intended to compare the different testing strategies in a

representative testing situation, using programmers with a wide range of experi-

ence, different software types, and common software faults.

The major results of this study are 1) with the professional programmers,

code reading detected more software faults and had a higher fault detection rate

than did funct'nal or structural testing, with functional testing detecting more

faults than did structural testing, and with functional and structural testing not

differing In fault detection rate; 2) In one UoM subject group, code reading and

functional testing were not different In faults found, but were both superior to

structural testing, while in the other UoM subject group there was no difference

among the techniques; 3) with the UoM subjects, the three techniques were not

different in fault detection rate; 4) number of faults observed, fault detection

rate, and total effort in detection depended on the type of software tested; 5)

code reading detected more Interface faults than did the other methods: and 6)

functional testing detected more control faults than did the other methods.

In comparing these results to related studles, we find m'xed conclusions. A.

prototype analysis done at the Unlverslty of Maryland In. the Fall of 191s

[HIwang 811 supported the bellef that code readlng by stepwlse abstractlon does

80

%

. . r *U *'U-.' * ..-

as well as the computer-based methods, with each strategy having its own ad-

vantages. In the Myers experiment [Myers 781, the three techniques compared

(functional testing, 3-person code reviews, control group) were equally effective.

He also calculated that code reviews were less cost-effective than the computer-

based testing approaches. The first observation is supported in one study phase

here, but the other observation Is not. A study conducted by Hetzel [Hetzel 76]

compared functional testing, code reading, and "selective" testing (a composite

of functional, structural, and reading techniques). He observed that functional

and "selective" testing were equally effective, with code reading being inferior.

As noted earlier, this is not supported by this analysis. The study described In

thi analysis examined the technique of code reading by stepwise abstraction,

while both the Myers and Hetzel studies examined alternate approaches to off-

line (nonexecution-based) review/reading.

A few remarks are appropriate about the comparison of the cost-

effectiveness and phase-avallability of these testing techniques. When examin-

Ing the effort associated with a technique, both fault detection and fault Isola-

tlon costs should be compared. The code readers have both detected and Isolat-

ed a fault, they located It in the source code. Thus, the readlng process con-

dnses fault detection and isolation Into one activity. Functional and structural

testers have only detected a fault, they need to delve Into the source code and

expend additional effort in order to isolate the def'ect. Also. a nonexecutlon-

based reading process can be applied to any document produced during the de-

velopment process (e.g.. high-level desln document. low-level desln dor lment.

81 l

.. -f....

source code document). While functional and structural execution-based tech-

niques may only be applied to documents that are executable (e.g., source code),

which are usually available later in the development process.

Investigations related to this work include studies of fault classification

[Weiss & Basill 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83,

BasIli & Perricone 841 and Cleanroom software development [Selby, Basill &

Baker 85]. In the Cleanroom software development approach, techniques such

as code reading are used In the development of software completely off-line (i.e.,

without program execution). In the above study, systems developed using

Cleanroom met system requirements more completely and had a higher percen-

tage of successful operational test cases than did systems developed with a more

traditional approach.

This empirical study Is Intended to advance the understanding of how varl-

ous software testing strategies contribute to the software development process

and to one another. The results given were calculated from a set of individuals

applying the three techniques to unit-sized programs - the direct extrapolation

of the findings to other testing environments is not implied. However, valuable

Insights Into software testing have been galined.

*8

m

.•

* -- ' I --- rr r r ' - r - - l7----r.- - --.-

4.2. Cleanroom Development Approach Analysis

The need for discipline in the software development process and for high

quality software motivates the Cleanroom software development approach. In

addition to Improving the control during development, this approach is intended

to deliver a product that meets several quality aspects: a system that conforms

with the requirements, a system with high operational reliability, and source

code that is easily readable and modifiable.

The next section describes the Cleanroom approach and a framework of

goals for characterizing its effect. The following section presents an empirical

study using the approach. The results are then given of an analysis comparing

projects developed using Cleanroom with those of a control group. The overall

conclusions are presented in a final section.

4.2.1. Cleanroom Software Development Method

The Federal Systems Division of IBM [Dyer 82c, Dyer & Mills 821 presents

the Cleanroom software development method as a technical and organizational
II

approach to developing software with certifiable reliability. The Idea Is to deny

the entry of defects durlng the development of sottware. hence the term "Clean-

rocm." The focus of the nietho(. Is ImposFng discipline on the development pro-

cess by lntegrat'ng fo rial methods for specification and deslgn, complete off-line

development. ana statistically based testing. These compornents are Intended to

contribute to a software product that has a high probability of zero leiec: aro

consequently a high measure or operatlonal rellabllltv.

83

-

no-we6 n3 EYLURTIONS OF SOFTURRE TECHNOLOGIES: TESTING CLENIOON 2.4
AND METRICS(U) MARYLAND UNJY COLLEGE PARK DEPT OF
COMPUTER SCIENCE R N SELBY MAY 05 TR-±56*I UNCLSSIFIED AFOSR-TR-B6-6279 F496208-C-SSSI F/0 9/2 NL

'p..

I .

k

W 2"8 E2

______ L 32. . .,

140

111_L2 11114O 111126IIII l '
IIIII.- P

IIII...I + ++, ..I"-'--I

C I• . ,I

• .

," -.- .. :b"" . - . -. . -, -i) , = : . , = = . :) 1 . P.P ..') W' ,J-1. Wv-: . '~ .

The mathematically-based design methodology of Cleanroom includes the

use of structured specifications and state machine models [Ferrentlno & Mills

77]. A systems engineer Introduces the structured specifications to restate the

system requirements precisely and organize the complex problems Into manage-

able parts (Parnas 72b]. The specifications determine the "system architecture"

of the InterconnectIons and groupings of capabilities to which state machine

design practices can be applied. System Implementation and test data formula-

tion can then proceed from the structured specifications Independently.

The rlght-the-first-time programming methods used in Cleanroom are the

ideas of functionally based programming in [Mills 72a, Linger, Mills & %Vitt 791.

The testing process Is completely separated from the development process by
I."

not allowing the developers to test and debug their programs. The developers

focus on the techniques or code inspections [Fagan 78], group walkthroughs

[Myers 78], and formal verification [Hoare 69, Linger, Mills & ,Vitt 79, Shankar

82, Dyer 83] to assert the correctness of their implementation. These construc-

tive techniques apply throughout all phases of development, and condense the

activities of defect detection and Isolation Into one operation. This discipline Is

Imposed with the Intention that correctness Is "desIgned" Into the software, not

"tested" In. The notion that "Vell, the software should always be tested to

find the faults" Is eliminated.

In the statistically based testing strategy of Cleanroom. Independent testers

simulate the operational environment or the system with random testln;. Thls

testing process Includes detining the frequency distribution of Inputs to the sys-

84

84 -..
.Sa a &. s .'.. .a ~ * ~.. - - -=

tern, the frequency distribution of different system states, and the expandingpi
hierarchy of developed system capabilities. Test cases then are chosen random-

ly and presented to the series of product releases, while concentrating on func-

tlons most recently delivered and maintaining the overall composite distribution

of Inputs. The Independent testers then record observed failures and determine

an objective measure of product reliability. It is believed that the prior

knowledge that a system will be evaluated by random testing will affect system

reliability by enforcing a new discipline into the system developers.

4.2.1.1. Investigation Goals

Some Intriguing aspects of the Cleanroom approach Include i) development

without testing and debugging of programs, 2) Independent program testing for

quality assurance (rather than to find faults or to prove "correctness [Howden

761), and 3) certification of system reliability before product delivery. In order

to understand the effects of using Cleanroom, the following three goals are pro-

posed: 1) characterize the effect of Cleanroom on the delivered product, 2)

characterize the effect of Cleanroom on the software development process, and

3) characterize the effect of Cleanroom on the developers. An applicatlon of the

goal/questIon/metrlc paradigm [Basill & Selby 84. BasIli & \Velss S4] leads to

the framework of goals and questions for thIs study appearing In Figure 20.

The empirical study executed to pursue these goals Is described In the followln;

section.

* 85
r.

Figure 20. Framework of goals and questions for Cleanroom development

approach analysis.

I. Characterize the effect of Cleanroom on the delivered product.
A. For Intermediate and novice programmers building a small system, what

were the operational properties of the product?

1. Did the product meet the system requirements?
2. How did the operational testing results compare with those of a con-

trol group?
B. What were the static properties of the product?

1. Were the size properties of the product any different from what
would be observed In a traditional development?

2. Were the readability properties of the product any different?
3. Was the control complexity any different?
4. Was the data usage any different?
5. Was the Implementation language used any differently?

C. What contribution did programmer background have on the final pro-
duct quality?

II. Characterize the effect of Cleanroom on the software development process.
A. For Intermediate and novice programmers building a small system, what

techniques were used to prepare the developing system for testing
submissions?

B. What role dId the computer play In development?
C. Did they meet their delivery schedule?

III. Characterize the effect of Cleanroom on the developers.
A. Vhen Intermediate and novice programmers built a small system, did

the developers miss the satisfaction of executing their own programs?

1. Did the missing of program execution have any relationship to pro-
grammer background or to aspects of the delivered product?

B. How was the design and coding style of the developers affected by not
being able to test and debug?

C. Would they use Cleanroom again?

4.2.2. Empirical Study Using Cleanroom

This section describes an empirical study comparing team projects

developed using Cleanroom with those using a more conventional approach.

86

71

.; :-: - .; , .,: -,, . - . .- :- - ." -. .. - .- : - .. . : . , .: . . -. . . , . . -- - .- .:.- . -.. .,. . . -- .

4.2.2.1. Case Study Description

Subjects for the empirical study came from the "Software Design and De-

velopment" course taught by F. T. Baker and V. R. BasIll at the University of

Maryland In the Falls of 1982 and 1983. The Initial segment of the course was

devoted to the presentation of several software development methodologies, In-

cluding top-down design, modular specification and design, PDL, chief program-

mer teams, program correctness, code reading, walkthroughs, and functional

and structural testing strategies. For the latter part of the course, the Indlvldu-

als were divided Into three-person chief programmer teams for a group project

[Baker 72b, MIlls 72b, Baker 81]. We attempted to divide the teams equally ac-

cording to professional experience, academic performance, and Implementation

language experience. The subjects had an average of 1.8 years professional ex-

perlence and were computer science majors with junior. senior, or graduate

standing. Figure 21 displays the distribution of the subjects' professional ex-

perience.

Figure 21. Subjects' professional experience In years.

x
x x
X X X X

x xxxx X
x xxxxx x X X
x xxxxx X xx xx xx Xx XX X X

0 1 2 3 4 6 7

87

A requirements document for an electronic message system (read, send,

mailing lists, authorized capabilities, etc.) was distributed to each of the teams.

The project was to be completed in six weeks and was expected to be about

1200 lines of Slmpl-T source [Baslll &z Turner 781. 7 The development machine

was a Univac 1100/82 running EXEC VIII, with 1200 baud Interactive and re-

mote access available.

The ten teams In the Fall 1982 course applied the Cleanroom software de-

velopment approach, while the five teams In the Fall 1983 course served as a

control group (non-Cleanroom). All other aspects of the developments were the

same. The two groups of teams were not statistically different In terms of pro-

fesslonal experience, academic performance, or Implementation language experl-

ence. If there were any blas between the two times the course was taught, it

would be In favor of the 1983 (non-Cleanroom) group because the modular

design portion of the course was presented earlier. It was also the second time

F. T. Baker had taught the course. Note that the teams In the non-Cleanroom

group applied a development approach similar to the "disciplined team" ap-

proach examined In an earlier study [Baslll & Relter 81].

The first document every team In either group turned In contained a sys-

tem specification, composite design diagram, and Implementation plan. The

' SImpl-T Is a structured language that supports several string and file han-
dling primitives. In addItIon to the usual control flow constructs available. for
example, In Pascal. If Pascal or FORTRAN had been chosen. It would have
been very likely that some indIviduals would have had extensive experience with
the language, and this would have biased the comparison. Also, restricting ac-
cess to a compiler that produced executable code would have been very TCult. '

88
IN

o - . ° - , - • • °. . .- . . . • • . •. o . .. - . • . . 1

Ai

latter element was a series of milestones describing when the various functions

within the system would be available. At these various dates (minimum one

week apart, maximum two), teams from both groups would then submit their

systems for testing. An Independent party would then apply statistically based

testing to each of these deliveries and report to the team members both the suc-

cessful and unsuccessful test cases. The latter would be Included in the next

test session for verification. Recall that the Cleanroom teams could not execute

their programs - they had editing and syntax-checking capabilities only. They

had to rely on the techniques of code reading, structured walkthroughs, and in-

spections to prepare their programs before submission. On the other hand, the

non-Cleanroom teams had full access to compilation and execution facilities to

test their systems prior to Independent testing.

All team projects were evaluated on the use of the development techniques

presented in class, the Independent testing results, and a final oral Interview. In

addition to these sources, Information on the team projects was collected from a

background questionnaire, a postdevelopment attitude survey, static source code

analysis, and operating system statistics. The following section briefly describes

the operationally based testing process applied to all projects by the inr.epen-

dent tester. -

4.2.2.2. Operational Testing of Projects

The testing approach used In Cleanroom Is to slmulate the develop1n.

system's environment by randomly selecting test data from an "perat',rnal

89 IN

[" ** r -

t4

profile," a frequency distribution of Inputs to the system (Thayer, Llpow & Nel-

son 78, Duran & Ntafos 811. The projects from both groups were tested Interac-

tlvely at the milestones chosen by each team by an Independent party (I.e., R.

W. Selby). A distribution of Inputs to the system was obtained by Identifying -4.

the logical functions In the system and assigning each a frequency. This fre-

quency assignment was accomplished by polling eleven well-seasoned users of

the University of Maryland Vax 11/780 mailing system. Then test data were

generated randomly from this profile and presented to the system. Recording of

failure severity and times between failure took place during the testing process.

The operational statistics referred to later were calculated from fifty user-sesslon

test cases run on the final system release of each team. For a complete explana-

tion of the operationally based testing process applied to the projects, Including

test data selection, testing procedure, and failure observation, see Appendix C.

4.2.3. Data Analysis and Interpretation

The analysis and Interpretation of the data collected from the study appear

In the following sections, organized by the goal areas outlined earlier. In order

to address the various questions posed under each of the goals, some raw data

usually will be presented and then Interpreted. Figure 22 presents the number

of source lines, executable statements, and procedures and functions to give a

rough view of the systems developed.

90

Figure 22. System statistics. "_

Team Cleanroom Source Executable Procedures &
Lines Statments Funcclons

A yes 1681 813 55

B yes 1626 717 42
C yes 1118 573 42
D yes 1046 477 30
E yes 1087 624 32
F yes 1213 440 35
G yes 1196 581 31

H yes 1876 550 .51

I yes 1305 608 23
J yes 1052 658 24

a no 824 410 26

b no 1429 633 18

c no 2264 999 46
d no 1629 626 67

e no 1310 459 43

4.2.3.1. Characterization of the Effect on the Product Developed

This section characterizes the differences between the products delivered by

both of the development groups. Initially we examine some operational proper-

ties of the products, followed by a comparison of some of their static properties.

4.2.3.1.1. Operational System Properties

In order to contr-st the operational properties o[' the syste"is delivered b:.y

the two groups, both completeness of Implem,,ntatLon and operational tes*ln_

results were exam'ned. .\ measure of Implementation completeness was C:Ilcl-

iateA by part,1,,onIn; the required system Into lein !c.ci thcs c

-nd m:ill to an I ndlvliIal. read a pIece of n.ali rl, pon . :11 1 y,:iir~eI , c ,

in" 1ist Each func-Icn In ain lrmpleient arl c.n w th ; t,.i : \::, "

91 |,

two If It completely met Its requirements, a value of one If It partially met

them, or zero If It was Inoperable. The total for each system was calculated; a

maximum score of 32 was possible. Figure 23 displays this subjective measure

of requirement conformance for the systems. Note that In all figures presented,

the ten teams using Cleanroom are in upper case and the five teams using a

more conventional approach are In lower case. A first observation Is that six of

the ten Cleanroom teams built very close to the entire system. While not all of

the Cleanroom teams performed equally well, a majority of them applied the

approach effectively enough to develop nearly the whole product. More Impor-

tantly, the Cleanroom teams met the requirements of the system more com-

pletely than did the non-Cleanroom teams.

Figure 23. Renuirement conformance of the systems.

J D

I FE A BGCH
de b c a

0 10 32

-'. 0 5 0% 91 i00

Mann-Whitney 8 i:!nif. OqR

To compare testing results among the systems developed In the two groups.

fifty randorn liser-sesslon test cases were executed on the final relea.se o:" eac i

system to silmulate lts operational environment. If the fnal release of a s'v ,m -

s The slintlcance levels for the Iann-\Vhirnoy stat sTlcs r:Itrol r'

probability of Type I error In an one-.alled test.

92

~--p..- - u- r . ° . .- . - r r .o. - F- r o~r 'U .~*. --

performed to expectations on a test case, the outcome was called a "success;" if

not, the outcome was a "failure." If the outcome was a "failure" but the same

failure was observed on an earlier test case run on the final release, the outcome

was termed a "duplicate failure." Figure 24 shows the percentage of successful

test cases when duplicate failures are not Included. The figure displays that

Cleanroom projects had a higher percentage of successful test cases at system

delivery. 9 \When duplicate failures are Included, however, the better perfor-

mance of the Cleanroom systems Is not nearly as significant (Mf-V .134). 10

This Is caused by the Cleanroom projects having a relatively higher proportion

of duplicate failures, even though they did better overall. This demonstrates

that while reviewing the code, the Cleanroom developers focused less than the

other groups on certain parts of the system. The more uniform review of the

whole system makes the performance of the system less sensitive to Its opera-

tional profile. Note that operational environments of systems are usually

difficult to define a priori and are subject to change.

9 Although not considered here, various software reliability models have
been proposed to forecast system reliability based on fallure data [Niusa 75.

Currit 83, Goel 83].

10 To be more succinct, .PN will sometimes be used to abbrevIate the

significance level of the Mann-VhItney statistic.

93 _W

L"]

P

Figure 24. Percentage of successful test cases during operational testing
(without duplicate failures).

D J H
E I FA BGC

c
d e b a

58.0 100

Mann-Vhltney signt. - .055

In both of the product quality measures of Implementation completeness

and operational testing results, there was quite a variation In performance." A

wide variation may have been expected with an unfamiliar development tech-

nique, but the developers using a more traditional approach had a wider range

of performance than dId those using Cleanroom In both of the measures (even

with twice as many Cleanroom teams). All of the above differences are

magnifled by recalling that the non-Cleanroom teams did not develop their sys-

tems In one monolithic step, they (also) had the benefit of periodic operational

testing by independent testers. Since both groups of teams had Independent

testing of all their deliveries, the early testing of deliveries must have revealed

most faults overlooked by the Cleanroom developers.

' An alternate perspective Includes only the more successful projects from

each group In the comparison of operational product quality. WVhen the best
60% from each approach are examined (I.e.. removing teams 'd,' 'e,' 'A,' 'E. F.'
and T). the Mann-Whitney signiflcance level for comparing Implementation
completeness becomes .045 and the significance level for comparlng successful
test cases (,w!thout duplicate failures) becomes .03-. ThuLs, comparlng the best
teams from each approach Increases the evidence In favor of Cleanroom In both
of these product quailty measures.

04

-- - " - " - ... • " - " - - " " , .' i ; : .i . .- , .. •-. .' -/ : .

- ' -. - - - - 1. j"

These comparisons suggest that the non-Cleanroom developers focused on a

"perspective of the tester," sometimes leaving out classes of functions and caus-

Ing a less completely implemented product and more (especially unique) failures.

Off-line review techniques, however,, are more general and their use contributed

to more complete requirement conformance and fewer failures In the Cleanroom

products. In addition to examining the operational properties of the product,

various static properties were compared.

4.2.3.1.2. Static System Properties

The first question In this goal area concerns the size of the final systems.

Figure 22 showed the number of source lines, executable statements, and pro-

cedures and functions for the various systems. The projects from the two

groups were not statistically different (NM\V > .10) In any of these three size at-

tributes. Another question In this goal area concerns the readability of the

delivered source code. Two aspects of reading and modifying code are the

number of comments present and the density of the "complexity." In an at-

tempt to capture the complexity density, syntactic complexity [Baslll k

Hutchens 83] was calculated and normalized by the number of executable state-

ments. In addition to control complexity. the syntactic complexity metric ccn-

siders nesting depth and prime program decomposition [Linger, Mills & WItt

79'. The developers usilng Cleanroomn wrote code that was more hl-hly com-

mented (\I\= .089) and had a lower complexity density (\f\%" .079) t""r

did those uing the tradlitlonal arpproach. A calculatlcin of elt her software scl-

95

I' %

ence effort [Halstead 771, cyclomatic complexity [McCabe 76], or syntactic com-

plexity without any size normalization, however, produced no signiflcant

differences (M\ V > .10). This seems as expected because all the systems were

built to meet the same requirements.

Comparing the data usage in the systems, Cleanroom developers used a

greater number of global data Items (MWV .071). Also, Cleanroom projects

pcssessed a higher percentage of assignment statements (MW .056). These

last two observations could be a manifestation of teaching the Cleanroom sub-

jects modular design later In the course (see Case Study Description), or possi-

bly an Indication of using the approach.

Some interesting observations surface when the operational quality meas-

ures of the Cleanroom products are correlated with the usage of the implemen-

tation language. Both percentage of successful test cases (without duplicate

failures) and Implementation completeness correlated with percentage of pro-

cedure calls 1Spearman R = .65, signif. = .044, and R = .57, signif. = .08,

respectively) and with percentage of If statements (R = .62, signlf. = .058, and

R = .55, signif. = .10, respectively). However, both of these two product qualil-

ty measures correlated negatively wlth percentage of case statements (R = -. 86.

sIgnIf. = .001, and R - -. 69, signif. .027, respectively) and with percentage

of while statements (R = -. 65, slgnlf. = .044. and R = -. 40. slgnif. = .15.

respectively). There were also some negatlve correlations between the product

quality measures and the average software science effort per subroutine (R

-. 52. sitgnI'. = .12. and R = -. 74. signif. .013. respectively*) an I the 1w raze

96

number of occurrences of a variable (R = -. 54, slgnIf. = .11, and R = -. 58,

signif. = .09, respectively). Considering the products from all teams, both per-

centage of successful test cases (without duplicate failures) and Implementation

completeness had some correlation with percentage of If statements (R = .48,

sIgnif. - .07, and R - .45, sIgnif. = .09, respectively) and some negative corre-

lation with percentage of case statements (R = -. 48, slgnif. = .07, and R =

-. 42, sIgnlf. = .12, respectively). Neither of the operational product quality

measures correlated with percentage of assignment statements when either all

products or Just Cleanroom products were considered. These observations sug-

gest that the more successful Cleanroom developers simplified their use of the

Implementation language; I.e., they used more procedure calls and If statements,

used fewer case and while statements, had a lower frequency of variable reuse,

and wrote subroutines requiring less software science effort to comprehend.

4.2.3.1.3. Contribution of Programmer Background

When examlnlng the contribution of the Cleanroom programmers' back-

ground to the quality of their final products, general programming language ex-

perlence correlated with percentage of successful operational tests (without du-

pllcate failures: Spearman R = .66. slgnlf. = .04: wlth duplicates: R = .70. slg-

nif. = .03) and with Implementation completeness (R = .55; slgnlf. - .10). No

relationship appears between either operational testlng results or Implementa-

tion completeness and either professional l2 or testing experience. These

' In fact. there are very _sliht negatlve correlatlons between years 01f prc-

f(essional experience and both percentage Of succeSsful tests (ithout duplicate

97

. .-.

'

background/quality relations seem consistent with other studies [Curtis 83].

4.2.3.1.4. Summary of the Effect on the Product Developed

In summary, Cleanroom developers delivered a product that 1) met system

requirements more completely, 2) had a higher percentage of successful test

cases, 3) had more comments and less dense complexity, and 4) used more glo-

bal data items and a higher percentage of assignment statements. The more

successful Cleanroom developers 1) used more procedure calls and If statements,

2) used fewer case and while statements, 3) reused variables less frequently, 4)

developed subroutines requiring less (software science) effort to comprehend, and

5) had more general programming language experience.

4.2.3.2. Characterization of the Effect on the Development Process

In a postdevelopment attitude survey, the developers were asked how

effectively they felt they applied off-line review techniques In testing their pro-

Jects (see Figure 25). This was an attempt to capture some of the Information

necessary to answer the first question under this goal (question II.A). In order

to make comparisons at the team level, the responses from the members of a

team are composed Into an average for the team. The responses to the question

appear on a team basis In a histogram In the second part of the figure. Of the

Cleanroom developers, teams 'A,' 'D,' 'E,' 'F,' and 'I' were the least confident In

their use of the off-line review techniques and these teams also performed the

failures: R = -.-46, slgnif. .18) and Implementation completeness (R - •47.
signlf. = .17).

98

-k-:- ----- :. .- .-. ., ,- .- . . " ".. . . . ":.... . . .

worst In terms of operational testing results; four or these five teams performed

the worst In terms of Implementation completeness. Off-line review effectiveness

correlated with percentage of successful operational tests (without duplicate

failures) for the Cleanroom teams (Spearman R = .74; slgnIf. = .014) and for

all the teams (R = .76; signlf. = .001); It correlated with Implementation com-

pleteness for all the teams (R = .58; signIf. = .023). Neither professional nor

testing experience correlated with off-line review effectiveness when either all

teams or Just Cleanroom teams were considered.

99

* ' d ' X . *~ * * S ~ >~ .--. -.- -... .-- -- ~" -.- - - -

Figure 25. Breakdown of responses to the attitude survey question, "Did
you feel that you and your team members effectively used off-line review
techniques in testing your project?". (Responses are from Cleanroom

teams.) 13

14 - Yes, they were effective for testing all parts of the program
5.5 - We used them but felt that they were only appropriate for certain parts of

the program

8.5 - We used them occasionally, but they were not really a major contributing
factor to the development

0 - Did not really use them at all

feeling of effective use of
off-line review techniques: both groups

(team 'e' does not appear because of lack of response)

J
H

E I G
D F A C B

d c a b

did not use effective for

all parts

Mann-WVhtney slgnlf. - .065

The histogram In Figure 25 shows that the Cleanroom developers felt they

applied the off-line review techniques more effectively than did the non-

Cleanroom teams. The non-Cleanroom developers were asked to give a relative

breakdown of the amount of time spent applying testing and verlfication tech-

niques. Their aggregate response was 39% off-line review, 52c% functlonal test-

Ing, and 9- structural testing. From this breakdown, we observe that the

13 There are half-responses because an Individual checked both the second
and third choices. The responses total to 28, not 30. because two separate
teams lost a member late In the project. (See Dlstlnctlon Among Teams).

100

..... - . . . -

non-Cleanroom teams primarily relied on functional testing to prepare their sys-

tems for Independent testing. Since the Cleanroom teams were unable to rely

on testing methods, they may have (felt they had) applied the off-line review

techniques more effectively.

Since the role of the computer is more controlled when using Cleanroom,

one would expect a difference In on-line activity between the two groups. Fig-

ure 26 displays the amount of connect time that each of the teams cumulatively

used. A comparison of the cpu-tlme used by the teams was less statistically

significant (MW = .110). Neither of these measures of on-line activity related

to how effectively a team felt they had used the off-line techniques when either

all teams or Just Cleanroom teams were considered. Although non-Cleanroom

team 'd' did a lot of on-line testing and non-Cleanroom team 'e' did little, both

teams performed poorly In the measures of operational product quality discussed

earlier. The operating system of the development machine captured these sys-

tem usage statistics. Note that the time the ,adependent party spent testing Is

included. 14 These observations exhibit that Cleanroom developers spent less

time on-line and used fewer computer resources. These results empirically sup-

port the reduced role of the computer In Cleanroom development.

14 W\hen the t~me the Independent tester spent Is not Included, the

significance levels for the non-parametric statlstics do not chanqe.

101

Figure 28. Connect time In hours during prolect development. 15

G
BEC IHFD JAe b c a d

.------- ----------------- ------

0.0 155.0

Mann-Whitney signif. .089

Schedule slippage continues to be a problem In software development. It

would be interesting to see whether the Cleanroom teams demonstrated any

more discipline by maintaining their original schedules. All of the teams from

both groups planned four releases of their evolving system, except for team 'G'

which planned five. Recall that at each delivery an independent party would

operationally test the functions currently available in the system, according to

the team's Implementation plan. In Flaure 27, we observe that all the teams us-

Ing Cleanroom kept to their original schedules by making all planned dellveries;

only two non-Cleanroom teams made all their scheduled deliveries.

15 Non-Cleanroom team 'e' entered a substantial portion of Its system on a

remote machine, only uslng the Unlvac computer mainly for compilation and
* execution. (See Distinction Among Teams.)

102

II 02

)-7.

- Figure 27. Number of astem releases.

H '

F
E
D
C
B
A G

e C
d a b

0 1 2 3 4 5 "

Mann-Whitney slgnlf. = .006

4.2.3.2.1. Summary of the Effect on the Development Process

Summarizing the effect on the development process, Cleanroom developers

1) felt they applied off-line review techniques more effectively, while non-

l

Cleanroom teams focused on functional testing; 2) spent less time on-line and

used fewer computer resources; and 3) made all their scheduled deliveries.

4.2.3.3. Characterization of the Effect on the Developers

The first question posed In this goal area Is whether the Individuals using

Cleanroom mlssed the satisfaction of executing their own programs. FIg ure 2S

presents the responses to a question Included In the postdevelopment attltude

survey on this issue. As might be expected, almost all the Indvlduals missed

some aspect of program execution. As might not be expected. however, this

mlssing of program execution had no relation to elther the product quallty

103

..7.

measures mentioned earlier or the teams' professional or testing experience.
p

Also, missing program execution did not Increase with respect to program size

(see Figure 29).

104

1W

..... , .. a .- -.

. .

Figure 28. Breakdown of" responses to the attitude survey question, "Did '

you miss the satisfaction of executing, your own programs?".

13 - Yes, I missed the satisfaction of programn execution. =

11 - I somewhat missed the satisfaction of program execution.
4 - No, I did not miss the satisfaction of' program execution.

Figure 29. Relationship of program size vs. missing program execution.

10.0 --- + - -- ---------

Yes- I E

-+ +

DJCI I .I

MI s s e d I G B I
Program + +
Execution i

Some-

+ F. A

H

4.0 ------- ---
921.0 2001.0

No (3.0) Source Lines

Spearman correlations: -. 1Q5 (signif. = .002) with source lines: -. 70 (slgnllf.
.03) with number separately compIlable modules: -. 37 (signi:'. - .09)
with number procedures and functions.

Figure 30 displays the replies of the developers when they were asked how

their design and coding style was affected by not being able to test and debug.

-kt first It would seem surprising that more people did not modlfy their develop-

105

-. . . . ". - "- . . -." % .. - . . '.- - . " .,..,'. , - . . . • . . . _ . -. " .. . - - .. . - -... .

ment style when applying the techniques of Cleanroom. Several persons men-

tioned, however, that they already utilized some of the Ideas In Cleanroom.

Keeping a simple design supports readability of the product and facilItates the

processes of modification and verification. Although some of the objective pro-

duct measures presented earlier showed differences In development style, these

subjective ones are Interesting and lend Insight into actual programmer

behavior.

Figure 30.
Breakdown of responses to the attitude survey question, "How was your
design and coding style affected by not being able to test and debuz?".

2 - Yes, my style was substantially revised.
15 - I modified some of my tendencies.
11 - It did not affect my style at all.

Frequently mentioned responses Include
- kept design simple, attempted nothing fancy

- kept readability of code In mind
- already was a user of off-line review techniques
- very careful scrutiny of code for potential mistakes

- prepared for a larger range of Inputs

One Indicator of the Impression that -omethlng new leaves on people is

whether they would do It again. Figure 31 presents the responses of the Indlvi-

duals when they were asked whether they would choose to use Cleanro rn, -i-

ther a software development manager or a programmer. Even thoi;h T11,I

responses were gathered (immediately) after rourse completion, bjects derlni

to "pleae the Instructor'" may have re p,,led :avorably to this type oa ;:,-

tlon regardless of their true t' n.;s [,,c ... v, ,

ness to apply the approach a:i. I 'u..'

106

number of persons in a managerial role would choose to always use It. Of the

persons that ranked the reuse of Cleanroom fairly low In each category, four of

the five were the same people. Of the six people that ranked reuse low, four

were from less successful projects (one from team 'A', one from team 'E' and

two from team 'I'), but the other two came from reasonably successful develop-

ments (one from team 'C' and one from team 'J'). The particular individuals

on teams 'E,' 'I,' and 'J' rated the reuse fairly low In both categories.

Figure 31.
Breakdown of responses to the attitude survey question, "\Vould you use
Cleanroom again?". (One person dld not respond to this question.)

As a software development manager?
8 - Yes, at all times

14 - Yes, but only for certain projects
5 - Not at all

As a programmer?
4 - Yes, for all projects

18 - Yes, but not all the time

5 - Only If I had to
0 - I would leave If I had to

4.2.3.3.1. Summary of the Effect on the Developers

In summary of the effect on the developers, most Cleanroom developers i)

modified In part their development style, 2) missed program execution, and 3)

Indicated they would use the approach agaln.

4.2.3.4. Distinction Among Teams

In spite of efforts to balance the teams acr(.rilnqz to vfrlcus factors (see

CGise Study Description). a few cllfe-enes :Imc!1 tflo t,:v,, were a,,parev.

107

Two separate Cleanroom teams, 'H' and 'I,' each lost a member late In the pro-

ject. Thus at project completion, there were eight three-person and two two-

person Cleanroom teams. Recall that team 'H' performed quite well according

to requirement conformance and testing results, while team 1 did poorly. Also,

the second group of subjects did not divide evenly Into three-person teams.

Since one of those Individuals had extensive professional experience, non-

Cleanroom team 'e' consisted of that one highly experienced person. Thus at

project completion, there were tour three-person and one one-person non-

Cleanroom teams. Although team 'e' wrote over 1300 source lines, this highly

experienced person did not do as well as the other teams In some respects. This

Is consistent with another study In which teams applying a "disciplined method-

ology" In development outperformed Individuals [Basill & Reiter 81]. Flgure 32

contains the significance levels for the above results when team 'e.' when teams

'H' and "," and when teams 'e,' 'H,' and 'I' are removed from the analysis. Re-

moving teams 'H' and '1' has little effect on the significance levels, while the re-

moval of team 'e' causes a decrease In all of the significance levels except for ex-

ecutable statements, software science effort, cyclomatic complexity, syntactic

complexity, connect-time, and cpu-time.

108

L4

Figure 32. Summary of measure averages and significance levels. 1
Measure Ave rage Mann-Whitney

significance levels

Clean- Non- All Vith- With- With-
room Clean- Teams out out out

Teams room Team Teams Teams

I Teams e H.1 e.H.

Source lines 1320.0 1491.2 .196 .240 .153 198
Executable stmts 604.1 625.4 .500 .286 .442 .367

#Procedures &
functions 36.5 40.0 .357 .500 .330 .500

0cImplementation
completeness 82.5 60,0 .088 A97 .093 .196

%Successful tests (w/o
dupUcate failures) 92.5 80.8 .055 .128 .053 .116

%Successful tests (w/
duplicate failures) 78.7 59.2 .134 .285 .151 .304

#Comments 194.9 122.2 .089 .102 .190 198
Syntactic complexity/

executable sts 1.5 1.6 .079 .179 .082 .175

Software Science E 6728.6e3 7355.4e3 .451 .240 .442 .248

Cyclomatic complexity 196.8 212.2 .250 .198 .255 248

Syntactic complexity 917.5 1017.0 .500 286 .500 .305
#Global data items 37.6 24.2 .071 .129 .053 .117

%Assignment struts 34.2 26.6 .056 .129 .040 .087
Off-line effectiveness 3.2 2.5 .065 065 .098 .098
Connect-time (hr.) 41.0 71.3 .089 .012 .121 021
Cpu-time (min.) 71.7 136.1 .110 .017 .072 .009

#Deliveries 4.1 2.6 .006 .015 .010 022

4.2.4. Conclusions

This paper describes "'Cleanroom" software development - an approach in-

tended to produce hIghly reliable software by IntegratIng formal methods for

specllcatoin and design, complete off-lIne development. and statIstIcally based

tt'stlng. The qoal structure, experimental approach. data analysis, and conclu-

4.,ons are pr-snt el tr a repl cated-project study examinn the Cleanroon :ap-

proacch. Th1 s I; the t St I nvostZ,,tlon known to the au thors t hat ,applle'I Clean-

V r* .> reI .t \
%

;) r n lr' %)[Ip,.n ..%

109 1

-...............- . "---..

proach.

The data analysis presented and the testimony provided by the developers

suggest that the major results of this study are 1) most developers were able to

apply the techniques of Cleanroom effectively; 2) the Cleanroom teams' pro-

ducts met system requirements more completely and had a higher percentage of

successful test cases; 3) the source code developed using Cleanroom had more

comments and less dense complexity; 4) the use of Cleanroom successfully

modified aspects of development style; and 5) most Cleanroom developers Indi-

cated they would use the approach again.

It seems that the Ideas in Cleanroom help attain the goals of producing

high quality software and increasing the discipline in the software development

process. The complete separation of development from testing appears to cause

a modification in the developers' behavior, resulting In Increased process control

and in more effective use of formal methods for software specification, design,

off-line review, and verification. It seems that system modification and mainte-

nance would be more easily done on a product developed In the Cleanroom

method, because of the product's thoroughly conceived design and higher reada-

bility. Thus, achieving high requirement conformance and high operational rell-

ability coupled with low maintenance costs would help reduce overall costs.

satisfy the user community, and support a long product lIfetime.

This empirical study Is intended to advance the understanding of the rela-

tIonship between Introducing discipline into the development process (as in

Cleanroom) and several aspects of product quality: conformance with require-

110

ments, high operational reliability, and easily modifiable source code. The

results given were calculated from a set of teams applying Cleanroom develop-

ment on a relatively small project - the direct extrapolation of the findings to

other projects and development environments is not Implied. Valuable insights,

however, have been gained from the analysis.

• ~

I--.

Ill U

4.3. Characteristic Metric Set Study

Several metrics have been proposed to predict product cost/quality and to

capture distinct project aspects [McCabe 76, Halstead 77, Chen 78, Gaffney &

Heller 80, Behrens 83]. The effectiveness of the measures In capturing what Is

Intended, however, has depended on the particular environment examined

[Walston & Felix 77, Curtis, Sheppard & Milliman 79, Feuer & Fowlkes 79,

Baslll 80, Bailey & Baslll 81, Boehm 81, Brooks 81, Zolnowskl & Simmons 81,

Vosburgh et al. 84]. A particular software metric that has been useful to

characterize, evaluate, or predict aspects of software development In one en-

vironment may have limited usefulness elsewhere. The differing cost/quality

goals among environments and the diversity In methodology, software type, etc.

contribute to the Inconsistent performance of metrics. Thus, It Is Inappropriate

to attempt to select a set of software metrics that have universal effectiveness

across all software environments. The selection of a set of metrics appropriate

for a particular environment must consider Its Individual features; that Is, a

metric set must be customized to a specific environment.

This study develops an approach for customizing to an environment a

characteristic set of cost and quality measures. The approach then Is applied In

a software production environment. This section describes the concept of a

characteristic software metric set. Investigation goals, empirical study, and data

analysis.

112

................... ..- .

4.3.1. Characteristic Software Metric Sets

The successful management of software projects requires a diverse range of

capabilities, including monitoring and controlling the evolving software system

and forecasting the outcome of the development. Techniques that assist in

these management functions may lead to more successful projects, and possibly

higher product requirement conformance and operational reliability. The Idea

of a characteristic software metric set supports several aspects of software

management.

A characteristic software metric set Is a concise collection of measures that

capture distinct factors in a software development/modification environment. A

characteristic metric set can be thought of as a vector of measures that

represents different areas of importance In an environment. Since both

cost/quallty goals and production environments differ, the particular factors

that are captured by the metrics In the set will differ across environments. The

calculation of a characteristic metric set should be based on the particular cost

.and quality goals In an environment, and reflect the inherent differences of the

environment from others.

A characteristic metric set may be used to 1) characterize an environment,

2) compare an environment with others, 3) monitor current project status, or 4)

forecast project outcome relative to past projects, when metrics in the set are

available early in development. Once the distinct factors In an environment's

set are determined, the set then characterizes what aspects are Important In the

environment. Comparing the characterlstlc set of factors In one environment

113

r: 7:,

with the sets of other environments provides a format to distinguish and con-

trast among them. Within an individual environment, the actual values of the

metrics In the set characterize a particular project or project subsystem. The

change In the metric values during a project can be used to monitor project
'=a

status and Its change over time. The characteristic set In conjunction with his-

torical data can be used to forecast the outcome of the current project relative

to past project performance.

4.3.1.1. Investigation Goals

The goals for this study are threefold. I.) Develop an approach for custom-

izing a set of measures to particular cost/quality goals In a specific environment.

H.) Apply the approach to calculate the characteristic set for the NASA/SEL

environment. II.) Examine the usability of the approach as a management tool

for predicting outcome of system parts. An application of the

goal/question/metric paradigm [Basill & Selby 84, Basill & Weiss 84] leads to

the framework of goals and questions for this study appearing In Figure 33.

Figure 33. Framework of goals and questions for characteristic set study.

I. Develop an approach for customizing a set of measures to partlcular
cost/quality goals In a particular environment.

A. Is the approach sensitive to different cost and quality goals?

B. Does the approach capture the aspects that dlstlngulsh a glven environ-
ment from others?

II. Calculate the characteristic set for the NASA/SEL environment.

114

* - -~,r ~ r r .rF -%W-..j

'p

A. In the NASA/SEL environment of projects and programmers, which dis-

tinct factors are Important?

1. What Is the ordering of factors that reflects their Importance In the

environment?

2. How many distinct factors are there?

B. What metrics are appropriate for the various factors In the set?

111. Examine the usability of the approach as a management tool for predicting
outcome of system parts.

A. In the NASA/SEL environment of projects and programmers, does

determining a characteristic metric set and using historical data en-

able one to Identify which modules will have Interesting attributes,

such as high total development effort?

B. What are the best single Identifiers of Interesting modules when the

cost/quality aspect considered changes?

4.3.2. Empirical Study

This section describes the SEL environment examined and the scheme for

data collection.

4.3.2.1. SEL Environment

The Software Engineering Laboratory (SEL) [Basill et al. 77, Basill & Zel-

kowltz 7S. Card et al. 82. SEL 821 Is a Joint venture between the kUniversity of

Maryland, NASA./Goddard Space Flight Center, and Computer Sciences Cor-

poration. The purpose of the SEL has been to provide an experimental data-

base for examining relationships among the factors that affect the software de-

velopment process and the delivered product. The software comprlslng the da-

tabase Is ground support software for satellites. The six systems analyzed In

115

- ' -.- -. -. .

this study cnitdof 51,000 to 1200lines of FORTRAN source code, and

took between 8900 and 22,300 man-hours to develop over a period of 9 to 21

months. There are from 200 to 800 modules (e.g., subroutines) In each system

and the staff size ranges from 8 to 23 people per project, Including the support

personnel. Anywhere from 10 to 61 percent of the source code Is reused or

modified from previous projects.

4.3.2.2. Effort, Change, and Fault Data

The data discussed In this study are extracted from several sources.

Among the data analyzed are the effort to design, code, and test the various

modules of the systems as well as the changes and faults that occurred during

their development. Effort data were obtained from a collection form that Is

filled out weekly by all programmers on the project. They report the time they

spent on each module In the system partitioned Into the phases of design, code,

and test, as well as any other time they spend on work related to the project,

e.g., documentation, meetings, etc. A module Is defined as any named object In

the system; that Is, a module Is either a main procedure, block data, subroutine

or function. The faults and changes are reported on another data collection

form that Is completed by a programmer each time a change Is made to thae sys-

tem. A static code analysis program called SA-P [Decker & Taylor 82[automati-

cally computed several of the static metrics examined In this analysis.

-, 116

.~ ~-
-

4.3.3. Data Analysis

The following sections present the analysis and results from this study bro-

ken down by the goal areas outlined earlier.

* . 4.3.3.1. Approach for Set Calculation

A proposed approach for calculating a characteristic set consists of three

steps: 1) formulate the goals and questions that represent cost/quality factors in

an environment; 2) list all measures that capture Information relating to the

goals; and 3) condense measures into a set capturing distinct factors. This ap-

proach satisfies the two key aspects of customizing a characteristic metric set to

an environment: sensitivity to the cost/quality goals of Importance In the en-

vIronment, and capturing the features that give the environment Its Identity.

The first step Is to generate a goal and question framework for the environ-

ment on which to base the generation of all potential metrics. After the goals

and questions have been specified for an environment, all possible metrics are

listed that represent relevant Information. These first two steps are an applica-

tlon of the goal/ question/ metric paradigm [BasilI & Weiss 84, Basill & Selby

84]. Since a software environment Is In some sense defined by the projects It

develops, applying the meLrics listed to those projects reflects an environment'sr
distinguishing features. The third step Is to condense the collection of measures

Into a characteristic set. Factor analysis may be applied to accomplish this

step. This data reduction task actually groups the metrics listed according to

how they relate to the distinct factors In an environment. Appropriate metrics

S117 . ..

-'--- -, ,.

that relate to each of the factors can then be selected based on some criteria,

such as ease of calculation or phase availability.

4.3.3.1.1. An Alternate Approach

An alternate approach to determining a small set of characteristic measures

was examined In [Elshoff 84]. In this approach, twenty candidate complexity

measures were calculated on 585 PL/I procedures. The name of each procedure

was put Into a large "complexity pot" once for each time the procedure ap-

peared In the top declle of a candidate complexity measure. Since there were

twenty candidate measures, the name of a given procedure could then appear

up to twenty times In the pot. The procedures Identified by a single measure

were then compared with those In the total pot. For each appearance of a pro-

cedure name In the total pot, a candidate measure was awarded one point If

that name was In the measure's top decile. The candidate complexity measure

that scored the highest would be selected for the characteristic set. All oc-

currences of procedure names were then removed from the pot that appeared In

the top declle of the first measure selected. The scores for the measures were

then recalculated based on the remaining procedures, and another measure

would then be selected, continuing until no procedures remained In the pot.

This alternate approach suffers because of the biased technique used to

select measures In the characteristic set, and a troublesome fundamental as-

sumpton In the calculation. Including a large number of hlghly dependent pro-

;ram measures in the collection exained ('e.gj., the soft ware -ijanrlty- --oup

of executable statements, length, volume, vocabulary, ...) increased dispropor-

tionately the number of appearances of routines commonly selected by that

group In the pot of "complex" programs. It Is therefore no surprise that the

measure that selected the greatest percentage of the appearances In the pot Is

one member of the "quantity" group (length). In each of the twenty program

measures examined, the top decile of programs was chosen as the most complex

according to that measure. This decision relied on the Implicit assumption that

software complexity is a monotonically Increasing function of each of the meas-

ures, which Is possibly troublesome.

The approach presented here bases the selection of a characteristic set of

measures on aspects of cost and quality In an environment. The use of meas-

ures In the characteristic set to Identify modules with particular attributes, such

as those of high "complexity" as was done In fElshoff 84], Is discussed In "Use

as a Management Tool."

4.3.3.2. Application in the SEL Environment

In the application of the approach In the NASA/SEL environment, there

were two major reasons to use just six recent projects. First, changes and Im-

provements in development technologies and personnel tend to be retlected In

*: the projects developed (as they are intended to be). Therefore, the consIdera-

tlon of projects not recently completed would not be fre taly, of the

current environment. Second. several deweloprn ent ar, v'2mrnL5 , 2W "

long history of data collection. Dlscusslnr : an ;i i >:, h t

* 119

project database would have little utility for them.

Three goal areas were defined for the SEL environment. The first goal area

was to analyze the system development effort. An example question under this

goal Is "What are the attributes of modules that result In high development

effort?-. The second goal area was to analyze the system modifications. An ex-

ample question here Is "What are the attributes of modules that will be dIfficult

to change?". Analyzing the system faults was the third goal area. An example

question would be "What are the attributes of modules that will be fault-

prone?". The generated list of measures based on these three goal areas appears

In Figure 34; a total of 65 measures was examined. The measures are grouped

according to the general areas of size/complexity [McCabe 76], effort,

faults/changes, and software science [Halstead 77]. The set notation In the

figure signifIes the normalization of one metric by another, e.g., amount of

design effort was considered alone and normalized by the amount of code effort,

testing effort, and overhead effort. In addition to belng examined alone, the

effort and faults/changes measures were in general normalized over the

size/complexity measures.

120

" ~~~~~~ ~~~ .1' . ." .o* .._. .] " .

Figure 34. List of measures examined In the SEL environment.

Size/Complexity Area
source lines (SRC)
executable statements (XQT)
comments
comments/SRC
XQT/(SRC-comxnents)
Cyclomaticcomplexity
Cyclomaticcomplexty_2
callIs
{Cyclomatlc-comiiexlty. Cyclomatic complexity_2} over kSRC. XQT}

Effort Area
total-effort
design..effort
code-effort
t es tin geffort
{ designeffort } over {code-effort, testIngeffort, overheadeffort}
{ code-effort} over {testing effort, overhead-effort}
f testing..effort} over {overhead-effort}
{ design...effort, code...effort, testing..effort} over {totaleffort, calls, 772}1
{total-effortl over {SRC, SRC-comments. XQT, calls, 7}*
Faults/Changes Area
version
total-changes
weighted changes
total-faults
weightedjfaults
{total -faults. weighted-faults over f SRC, XQT}I
Software Science

71 772 12 Ni
N2/772 N N- V V* L

L- I/L I/L- EE- E*
B- lambda E/SRC

From the six projects, this analysis tfocuses on 6352 newly developed

modules with complete data for the measures listed In Figure 34. The use of

factor analysis Isolated the set, of six distinct factors Including, 1in order of

overall Importance. {size. effort. ,Kfault density, code andl test effort..

The. The * metric is the number of 1/0 pararnetprs in a module. 5018?,

appropriate measures that related well to each of the factors In the set were a)

size - source lines, executable statements, and 77, (the number ofi unique opera-

tors); b) effort - design effort, 77*, and testing effort / r/*; c) 772- 77'; d) fault

density - #faults / executable statement; e) code and test effort - code effort,

code effort / #subroutine calls; and f) #changes - number of module versions.

This, a feasible characteristic metric set for the SEL environment Is {source

lines, design effort, number of I/O parameters, fault correction effort per execut-

able statement, code effort, number of versions}.

4.3.3.3. Use as a Management Tool

Although a characteristic set has the several uses outlined earlier, this

study focuses on the use of measures In the set to forecast the outcome of

modules In projects. Several studies have pointed to the unsatisfactory use of

metrics as d!rect predictors of software cost and quality [Hamer , Frewln 82:

BasIll, Selby & Phillips 83; Shen. Conte & Dunsmore 83]. This Inadequacy

motivates the use of software metrics from a new perspective - the examination

of how well the metrics In the characteristic set can Identify system parts (or

whole systems) resulting In high or low cost/quality. System parts with In-

teresting cost or quality attributes Include those wlth h.lh/ow development

effort, hlgh/low modification effort, or high/low fault correction effort.

An approach for using metrics o identify system parts havIng interestin.

aIttributes Is as follows. First. select some Interestlniz cest or quallty aspect of a

system part. such as the total development etort f,-.r a ,od'oiie. Then. choose a

122

window of modules that Is useful to Identify, such as those modules that will be

In a project's upper quartile of development effort. Next, determine the ranges

of metric values that contained modules from past projects ending up In the

upper quartile of development effort. From the calculation of the sensitive

metric ranges and the use of conditional probabilities from historical data, this

approach Is Intended to be able to identify interesting modules in the system.

4.3.3.3.1. Conditional Probabilities from Historical Data

The conditional probabilities displayed In Figure 35 were calculated from

six SEL projects, and are Interpreted as follows. The table Is divided Into three

sections, corresponding to the three SEL goal areas discussed above. There is a

table section for each dependent variable: total module development effort, total

effort for module modification, and total effort for fault correction in a module.

The characteristic set of six metrics that represents the different environmental

factors Is listed In each section of the table. Consider the section on total

module development effort. The entries in the table are the probability that a

module's eventual outcome will be In the upper quartile of total module devel-

opment effort, given that a module Is currently In quartile Qj of metric AiR.

For example. given that a module Is In the upper quartlie of code effort. it has a

probability of .74 of ending up In the upper quartlle of total module develop-

ment effort. A module in the thlrd quartile of source lines has a probablllty -I'

111s .11 of ending up In the upper quartlle or total development effort. The]n-

lorpretatlon Is the same for the other ,depenent va:ir ables of mn, I Ie

123

modifIcatlon effort and module fault correction effort. Flgure 36 Is analogous to

Figure 35, except that the entries are the conditional probabilities that the

eventual outcome will be In the lower (Instead of the upper) quartile of the

respective dependent variable. For example, a module In the lower quartile of

number of versions has a probability of .50 of ending up In the lower quartile of

total module development effort.

124

Figure 35. Conditional probabilities based on SEL data:
upper quartiles of dependent variables.

Quartile of Metric A__

Dependent Upper Second Third Lower Characteristic Set
Variable Metric Mi

Module

Development
Effort

.74 .18 .04 .04 code effort

.56 .18 .13 .13 design effort

.51 .26 .14 .09 source lines

.48 .24 .17 .11 72 *

.44 .37 .13 .06 version

.41 .28 .15 .16 fault correction
effort / XQT

Module
NIodlflcatlon

Effort

.65 .18 .08 .09 fault correction
effort / XQT

.52 .33 .11 .04 version

.50 .27 .17 .06 code effort

.50 .28 .13 .09 source lines

.45 .24 .23 .08 2

.41 .25 .18 .17 deslzn effort

Module
Fault

Correction

Effort

.81 .19 .00 .00 fault correction
effort / XQT

.50 .35 .12 .03 version

.48 .29 .15 .08 code effort

.42 .33 .14 .11 source lines

.42 .28 .19 .11 r*
1 .36 .25 .20 .19 deslgn effort

125
- j

A2S

Figure 36. Conditional probabilities based on SEL data:
____________lower quartiles of dependent variables.

__________Quartile of Metric M
Dependent Upper Second Third Lower Characteristic Set
Variable ____ Metric M;.

Module
Development

Effort ___ ___

.00 .00 .23 .77 code effort

.10 .12 .24 .54 source lines

.00 .14 .30 .50 version

.09 .21 .25 .45
.02 .23 .37 .38 design effort
.12 .25 .32 .31 fault correction

_____ _____ effort /XQT
Module

Modification
Effort _____ __

.09 .15 .28 .48 version

.01 .13 .43 .43 fault correction
effort /XQT

.14 .19 .25 .42r 2

.11 .18 .30 .41 source lines

.11 .18 .34 .37 code effort

.18 .28 .27 1.27 design effort
Module
Fault

Correction
Effort ___

.00 .00 .50 .50 fault correction
effort / XQT

.18 .18 .27 .37 version

.21 .19 .29 .31 source lines

.18 .24 .27 .31 code effort

.20 .24 .25 .31 r
_______ .18 .25 1.29 ± .2S design effort

4.3.3.3.2. Data Interpretation

The Information In these tables could be used to forecast the outcomle of'

modules In a systeni. At the end of the design phase, the 772' metric andI t ne

126

7. - ...-- - - - - - - - - - - - - - - - -...

amount of effort spent In design are known. The modules In the upper quartile

of design effort should be identified by a project manager because these modules

have a probability of .56 of ending up in the upper quartile of total develop-

ment effort. That is, in this environment the modules in the upper quartile of

design effort are more than twice (=.58/.25) as likely than by chance to be the

most expensive to develop overall; these modules are approximately 28

(=.56/.02) times more likely to be in the upper quartile of total development

effort than to be in the lower quartile of total development effort. Modules in

the upper quartile of the n72* metric are almost twice as likely than by chance to

require the most effort to develop, modify, and correct. Other observations in-

clude 1) it is easiest to identify those modules that will have high development

effort; 2) It Is most difficult to Identify those modules that will require little

fault correction effort; and 3) the metrics of deslgn effort and 17 are reasonably

similar in forecasting ability, except that 172 is superior In identifying modules

that will require little modification effort.

The two tables above help characterize the SEL development environment.

The total development effort for a module tends to be indicated by the module's

coding effort - modules In the extreme quartiles of coding effort are three times

more likely than by chance to be In the corresponding extreme quartIles of total

development effort. Since the programmers in the SEL are qulte experlenced In

the applicatlion and with approprIate design approa-hes. the dominance of codl-

In. effort seems reasonable. In other environments, the amount o1 design effort

might better indicate the total development effort requIred. Other observ:tilons

127
". -

. .. .

.

Include 1) high density of fault correction effort (fault correction effort per exe-

cutable statement) Indicates high total modification effort and high total fault

correction effort; and 2) an extreme (high or low) number of program versions

reflects a corresponding amount of modification effort and of correction effort.

Ideally, the metrics In the characteristic set would all be available early In

development and have strong relationships with the dependent variables of in-

terest. Some measures, such fault correction effort per executable statement,

have limited usefulness as a forecaster because of not being available until late

In project development. An assumption Is needed in order to use conditional

probabilities from past projects to forecast the outcome of modules from a

current project. The assumption Is that the relationship between a module's

metric value (at a point In time) and its eventual outcome Is the same as the re-

latIonshlp between the metric values from past projects' modules (at a

corresponding point In time) and their eventual outcome. hVen using data

based on recent projects that were similar to the current one, this assumption Is

reasonable. Note that the examples and conditional probabilities presented are

from a particular environment, project data from other environments may

dIffer.

Using a characteristic metric set wlth conditional probabilitles from past

projects enables the monltorlng of a small set of customized measures to fore-

cast the outcome of the current project. A characteristic set Is usable as a

management tool as soon as the metrics In the set are available.

128

b•

4.3.4. Conclusions

A characteristic software metric set Is Intended to help support the effective

management of software development and modification. The approach exam-

Ined for building a characteristic metric set Is adaptable to different cost/quality

goals and to different environments. The calculation and use of the set could be

coupled to an automated project monitor and database. The major results of

this study are 1) an approach has been described for customizing a characteris-

tic software metric set to an environment; 2) the application of the approach to

the SEL production environment yielded the characteristic software metric set

{source lines, design effort, number of I/O parameters, fault correction effort per

executable statement, code effort, number of versions}; and 3) the use of a

characteristic set with conditional probabilities from historical data can assist In

project management by forecasting the outcome of system parts. This work Is

Intended to advance the understanding of the use of various metrics to charac-

terize and predict aspects of software cost and quality.

129

-. .

%%

5. Conclusions

The understanding of the technologies that contribute to quality In the

software development process and the final product Is fundamental to the ad-

vancement of the software field. This dissertation presents three studies that

evaluate factors In key areas of software development, maintenance, and

management: testing strategies, Cleanroom software development, and environ-
4o

mental metrics.

In each of the studies, a seven-step approach for quantitatively evaluating-

software technologies couples software methodology evaluation with software

measurement. In the approach, goal/question frameworks of a technology's po-

tential effect on software cost and quality are coupled with measurable attri-

butes and appropriate quantitative analysis methods. The seven-step analysis

methodology provides a paradigm for quantitatively assessing the effect of soft-

ware technologies on software development and maintenance.

The goal structure, data analysis, and conclusions were presented for three

studies: a blocked subject-project study comparing software testing strategies, a

replicated project study characterizing the effect of using the Cleanroom soft-

ware development approach, and a multl-project variation study to determine a

characteristic set of software cost and quality metrics. The different studies

were chosen to satisfy several criteria: scope of evaluation, representative

domain samplIng, quantitative anaiysls method, area of assessment. scope of

technology. and potential benefit. The three studles are the following. 1) Soft-

130

. - - . - .: . _. -. -.,. . :.- . -... - - . . -,.... . . :.

_ a -7: . - -r

ware Testing Strategies: A 74-subject study, Including 32 professional program-

mers and 42 advanced university students, compared code reading, functional

testing, and structural testing in a fractional factorial design. 2) Cleanroom

Software Development: Fifteen three-person Leams separately built a 1200-11ne

message system to compare Cleanroom software development (In which software

Is developed completely off-line) with a more traditional approach. 3) Charac-

teristic Software Metric Sets: In the NASA S.E.L. production environment, a

study of 65 candidate product and process measures of 652 modules from six

(51,000 - 112,000 line) projects yielded a characteristic set of software

cost/quallty metrics.

These empirical studies are Intended to demonstrate an analysis methodolo-

gy In a variety of problem domains and to advance the understanding of 1) the

contribution of various software testing strategies to the software development

process and to one another; 2) the relationship between introduclng discipline

into the developmcnt process and several aspects of product quality (require-

ment conformance, operational rellabllity, and modifiable source code); and 3)

the use of software metrics to characterize software environments and to predict

project outcome.

5.1. Overall Results from the Software Technology Evaluations

The major results from the software technology evaluations are the rollow-

Ing. 1) \Vith the professionals programmers, code reading detected more Soft-

ware faults and had a higher fault detection rate than did functional or struc-

131

- - *. -.

tural testing, while functional testing detected more faults than did structural

testing, but functional and structural testing were not different In fault detec-

tlon rate. 2) With the advanced students, the three testing techniques were not

different In the number of faults detected or In the fault detection rate, except

that structural testing detected fewer faults than did the others In one study

phase. 3) Code reading detected more Interface faults and functional testing

detected more control faults than did the other methods. 4) Most developers

-using the Cleanroom software development approach were able to build systems

completely off-line. 5) The Cleanroom teams' products met system requirements

more completely and succeeded on more operational test cases than did those

developed with a traditional approach. 6) -kn approach described for calculat-

Ing a characteristic metric set yielded the set for the NASA S.E.L. environment

{source lines, design effort, number of Input/output parameters. fault correction

effort per executable statement, code effort, number of versions}.

5.2. Problem Areas

The use of the quantitative approach for evaluating software technologies

Identified several problem areas In data collection and analysls In software

research and management, suggesting future research areas. 1) The process oi

formulating Intuitive problems Into precisely stated goals Is a nontrivial task.

The Inherent difficulty In goal writing reflects the uncertainity of all aspects or

quality In the software product and development process. 2) Numerous soft-

ware metrics have been proposed to measure distinct attributes !" -i'ware.

132

These metrics need to be validated to determine whether they actually capture

what Is Intended. 3) The process of collecting accurate data Is a continuing

challenge. \Vlle there Is Increasing potential In automated collection schemes,

the more common data collection forms are subject to Incompleteness, incon-

sistency, and human error. 4) With the growing number of controlled studies

done to determine which factors contribute to software quality, the selection o..

samples (e.g., programmers, programs, ...) to analyze Is fundamental. In order

for the results of these studies to apply to larger environments, representative

samples of sufficient size must be selected. 5) These controlled studies are ex-

pensive to conduct. Both Industry and academia must help support these

efforts; e.g., academic researchers using subjects from Industry. 6) There seems

to be an interdependency among several factors that contribute to product and

process quality. The use of several techniques together may be effective as a

"critical mass", making the Isolation of their Individual effects difficult. 7) The

methods of analysis must account for the high variation In Individual perfor-

mance. Without careful planning, this many-to-one differential among humans

can taint experimental results. 8) Researchers have rarely been able to repro-

(luce results across environments. In addition to the lack of consistent use o'

measures, every software development or modification environment seems to

dIffer.

133

S*'*'~'*.*~.............../

LA

5.3. Overall Conclusions

The quantitative approach for evaluating software technologies has been

applied In three analyses of factors contributing to software quality. The

overall conclusions from this work are the following. 1) The approach described

for quantitatively evaluating software technologies has been demonstrated and

effective In a variety of problem domains. 2) The results from the testing stra-

tegy study suggest that code reading by stepwise abstraction (a nonexecutlon-

based method) Is at least as effective as on-line functional and structural testing

In terms of number and cost of faults observed. 3) The results from the Clean-

room study demonstrate the feasibility of complete off-line development (as In

Cleanroom) and suggest that such a development approach Is superior to a more

traditional approach. 4) The results from the software metric study suggest

that a characteristic metric set can assist In aspects of project management, In-

cluding the forecasting of effort for development, modification, and fault correc-

tion of modules based on historical data.

I 3..

io 1 .

6. Appendices
""r

6.1. Appendix A. Overview of Sampling and Statistical Test Applica-

tion

In the range of software analyses In the four-part classification scheme

presented earlier, there Is a relationship between the effectiveness of statistical

methods (attainable statistical significance) and the representativeness of the

sampled observations to production-world situations. Because of this observers

sometimes criticize the conclusions of an analysis or express doubt as to how

well the results would extrapolate to environments different that the ones stu-

died. This happens even when the analysis presented was sound and statistical-

ly significant. Emphasis needs to be placed on two aspects of applyIng statlstl-

cal tools In an analysis, observation sampling and statistical test application.

Nhen an experiment Is run, a certain sampling of data from some population Is

analyzed to achieve some result. After applying a statistical test to attributes

of the members of the sample, a set of conclusions Is derived.

The major considerations when choosing a sampling from a population are

how well the sampling represents the whole populatlon and how large the sam-

pllng should be. If a population Is finite, the most representative sampling

would be to select the whole population. There could then be no argument that

the observations studied did not represent the whole populatlon. Several In-

teresting populations, such as programmers or so'tware systems, are Infinite so a

reasonable finite sampllng must be chosen. Techniques used to etfectively

135

choose this sample are In statistical sampling theory [Cochran 53]. The

stratification of the population Is an important aspect of this process; that Is,

the identification of all the relevant aspects that differentiate among members of

the population. This set of aspects Is then distilled Into a pseudo-basis 16 set,

and then observations are chosen along the range of each basis set component.

If statistical results are generated from a finite sampling of an infinite popula-

tion, the issue of controversy Is usually how well this sampling corresponds to

the intended population. One component of the representativeness of this set Is

Its size.

In determining the sample size, both the achievement of statistical

significance In the experimental design and the economic constraints need to be

considered. The cardinallty of the basis set determines the number of factors

whose effect must be accounted for In the experimental design. The effect of

these factors Is blocked out In the design, enabling the investlgatlon to focus on

distinguishing between the particular treatments being examined [Box, Hunter,

& Hunter 78]. The decision to choose an experimental design is balanced

between one capable of blocking out these factors and the need to keep the

sample size economically feasible. The size of the sample also effects the proba-

bility of erroneous conclusions, referred to as Type I and Type II errors [Slegel

5 , p p. -1. 7

"3 The prefix pseudo Is used here since the ba:sls set achleved is usually an
approximation of a true basis set.

17 Type I error Is rejecting the experimental hypothesls when It Is Indeed

true. The probability of Type I error Is the slgnlflcance level, usually called al-

136

When applying a statistical test to a set of data, any assumptions that the

test requires must be verified. For example. assumptions regardIng the distribu-

tion of values or their variance commonly occur in parametric statistics. Given

that a set of data meets the required assumptions, the determination of the out-

come of the test is just mathematics; criticizing this aspect of experimentation is

unfounded. Note that different statistical tests have their own characteristics,

such as in terms of the power or sensitivity of the test [Siegel 55, pp. 10-il]. 18

Given that the assumptions for two ilffrent tests are both met, one of the tests

may be more appropriate to be chosen on these or other grounds.

6.2. Appendix B. Programs Used in the Testing Strategy Comparis-

on

6.2.1. Appendix B.I. The Specifications for the Programs

Proqram 1

Given an Input text of up to 80 characters consisting of words separated by

blanks or new-line characters, the program formats It Into a llne-by-line form

sucb that 1) each output line has a maximum of 30 characters, 2) a word In the

Input text Is placed on a single output line, and 3) each output llne Is 11iled with

as many words as possible.

phla. Type 11 error Is not rejecting the experimental n.ypothesls w en t Is 'se.
The probabillty or Type Ii error Is usually called beta.

' The pv.-er)I' a test Is one minus the probablIlty of Type 11 rrr.

137

The Input text Is a stream of characters, where the characters are categor-

ized as either break or nonbreak characters. A break character Is a blank, a

new-line character (&), or an end-or-text character (/). New-line characters

have no special significance; they are treated as blanks by the program. The

characters & and / should not appear in the output.

A word is defined as a nonempty sequence of nonbreak characters. A break

is a sequence of one or more break characters and Is reduced to a single blank

character or start of a new line In the output.

When the program Is Invoked, the user types the Input line, followed by a

/ (end-of-text) and a carriage return. The program then echos the text Input

and formats It on the terminal.

If the input text contains a word that Is too long to fit on a single output

line, an error message Is typed and the program terminates. If the end-of-text

character Is missing, an error message Is Issued and the program awaits the In-

put of properly terminated line of text.

Program 2

Given ordered pairs (x,y) of either positive or negatIve Integers as input,

the program plots them on a grid with a horizontal x-axls and a vertical y-axis

which are appropriately labeled. A plotted point on the grid should appear as

an asterisk (,).

The vertical and horizontal scaling Is handled as follows. If the maximum

absolute value of any y-value Is less than or equal to twenty (20), the scale for

138

.

vertical spacing will be one line per Integral unit (e.g., the point (3,B) should be

plotted on the sixth line; two lines above the point (3,4)). Note that the origin

(point (0,0)) would correspond to an asterisk at the the Intersectlon of the axes

(the x-axls is referred to as the 0th line). If the maximum absolute value of any

x-value Is less than or equal to thirty (30), the scale for horizontal spacing will

be one space per Integral unit (e.g., the point (4,5) should be plotted four spaces

to the right of the y-axis; two spaces to the right of (2,5)). However, If the max-

Imum absolute value of any y-value Is greater than twenty (20), the scale for

vertical spacing will be one line per every (max abs of yval)/20 rounded-up.

(e.g., If the maximum absolute value of any y-value to be plotted Is 66, the

vertical line spacing will be a line for every four (4) Integral units. In such a

data set, points with y-values greater than or equal to elght and less than

twelve will show up as asterisks In the second line, points with y-values greater

than or equal to twelve and less than sixteen will show up as asterisks In the

third line, etc. Continuing the example, the point (3,15) should be plotted on

the third line; two lines above the point (3,5).) Horizontal scaling Is handled

analogously.

If two or more of the points to be plotted would show up as the same as-

terlsk In the grld (like the points (9,13) and (9,15) In the above example). a

number "2" (or whatever number Is appropriate) should be printed Instead of the

asterlsk. Points whose asterlsks will lie on a axis or grld marker should show up

In place of the marker.

139

Program 3

A list Is defined to be an ordered collection of Integer elements which may

have elements annexed and deleted at either end, but not In the middle. The

operations that need to be available are ADDFIRST, ADDLAST,

DELETEFIRST, DELETELAST, FIRST, ISEMPTY, LISTLENGTH, RE-

VERSE, and NEWLIST. Each operation Is described In detail bc!ow. The lists

are to contain up to a maximum of five (5) elements. If an element Is added to

the front of a "full" list (one containing five elements already), the element at

the back of the list Is to be discarded. Elements to be added to the back of a

full list are discarded. Requests to delete elements from empty lists result in an

empty list, and requests for the first element of an empty list results In zero (0)

being returned. The detailed operation descriptions are as below:

-ADDFIRST(LIST L, INTEGER I)
Returns the list L with I as Its first element followed by all the elements of
L. If L Is "full" to begin with, L's last element Is lost.

ADDLAST(LIST L, INTEGER I)
Returns the list with all of the elements of L followed by I. If L Is full to
begin with, L is returned (i.e., I Is Ignored).

DELETEFIRST(LIST L)
Returns the list containing all but the first element of L. If L Is empty,
then an empty list Is returned.

DELETELAST(LIST L)
Returns the list containing all but the last element of L. If L Is empty,
then an empty list Is returned.

FIRST(LIST L)
Returns the first element In L. If L Is empty, then It returns zero (0).

ISEMPTY(LIST L)
Returns one (1) if L Is empty, zero (0) othervise.

LISTLENGTH(LIST L)
Returns the number of elements In L. An empty list has zero (0) elements.

N-EWLIST(LIST L)

Returns an empty list.

140

ml

REVERSE(LIST L)
Returns a list containing the elements of L In reverse order.

Program 4

(Note that a 'file' Is the same thing as an IBM 'dataset'.)

The program maintains a database of bibliographic references. It first

reads a master file of current references, then reads a file of reference updates,

merges the two, and produces an updated master file and a cross reference table

of keywords.

The first Input file, the master, contains records of 74 characters with the

following format:

column comment

1 - 3 each reference has a unique reference key

4 - 14 author of publication

15 - 72 title of publication

73 - 74 year Issued

The key should be a three (3) character unique identlfier consisting of letters

between A-Z. The next input file, the update file, contains records of 75 charac-

ters in length. The only difference from a master file record Is that an update

record has either an 'A' (capital A meaning add) or a 'R' (capital R meaning re-

place) In column 75. Both the master and update tlles are expected to be al-

ready sorted alphabetically by reference key when read into the program. Up-

date records with actIon replace are substituted for the matching key record In

141

" . , - " , ' ' " . -- ." . " " : - : : . " " " . - . ' . % . . " • . . . ' . - . . .- . . .' ' . 4 " . ' % . . _ -

I-

the master file. Records with action add are added to the master file at the ap-
p'.

propriate location so that the file remains sorted on the key field. For example,

a valid update record to be read would be (Including a numbered line Just for

reference)

123456789012345678901234567890123456789012345678901234567890123456789012345

BITbaker an Introduction to program testing 83A

The program should produce two pieces of output. It should first print the

sorted list of records In the updated master file In the same format as the origi-'

nal master file. It should then print a keyword cross reference list. All words

greater than three characters in a publication's title are keywords. These key-

words are listed alphabetically followed by the key fields from the applicable

updated master file entries. For example, If the updated master file contained

two records,

ABCkermt introduction to software testing 82

DMJ ones the realities of software amnagement 81

then the keywords are Introduction, testing, realities, software, and manage-

ment. The cross reference list should look like

Introduction

ABC

management

DDX

142

. - ~. . -. .

-31

realities

DDX

software

ABC

DDX

testing

ABC

Some possible error conditions that could arise and the subsequent actions

Include the following. The master and update files should be checked for se-

quence, and If a record out of sequence is found, a message slmllar to 'key ABC

out of sequence' should appear and the record should be discarded. If an up-

date record indicates replace and the matching key can not be found, a message

simllar to 'update key ABC not found' should appear and the update record

should be Ignored. If an update record Indicates add and a matching key Is

found, something like 'key ABC already In file' should appear and the record

should be ignored. (End of specification.)

6.2.2. Appendix B.2. The Source Code for the Programs

Program 1

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION MLATCH'
002: C IT IS DESCRIBED THE FIRST TIME IT IS USED, .A\ND ITS SOURCE CODE
003: C IS INCLUDED AT THE END FOR COMPLETENESS.
004: C
005: C NOTE TL-kT FORMLAT STATEMENTS FOR WRITE STATEMENTS INCLUDE

A LEADING
006: C AND REQUIRED ' 'FOR CARRL-kGE CONTROL
007-1
008: C VARL-kBLE USED D; FIRST. BUT NEEDS TO BE INITL-XLIZED
009: INTEGER NIOREIN.

143

- -- -- - "............,..........."..............,.........."...........'...........,..,.-....

. ,-. .'. r;.. ..'._ + *-. . - .,___ 7] p+ J .

010:
O11: C STORAGE USED BY GCHAR
012: INTEGER BCOUNT
013: CHARACTER*1 GBUFER(80)
014: CHARACTER*80 GBUF
015: C GBUFER AND GBUFSTR ARE EQUIVALENCED
016:
017: C STORAGE USED BY PCHAR
018: INTEGER I
019: CHARACTER*I OUTLIN(31)
020: C OUTLIN AND OUTLINST ARE EQUIVALENCED
021:
022: CHARACTER* iGCHAR
023:
024: C CONSTANT USED THROUGHOUT THE PROGRAM
025: CHARACTER*1 EOTEXT, BLANK, LINEFD
026: INTEGER MAXPOS
027:
028: COMON /ALL/ MORELN, BCOUNT, I, MAXPOS, OUTLN,
029: X EOTEXvT, BLANK, LINEFD, GBUFER, GBUF
030:
031: DATA EOTEXT, BLANK, LINEFD, MAXPOS / '/', '', '&', 31 /
032:
033:
034: CALL FIRST
035: END
036:
037:
038: SUBROUTINE FIRST
039: LNTEGER K, FILL, BUFPOS
040: CH.ARACTER*I CV
041: CHARACTER*i BUFFER(31)
042:
043: INTEGER MOREIN. BCOUNT, I. MAXPDOS
044: CHARACTER*1 OUTLIN(31), GCHAR, EOTEXT, BLANK, LINEFD,
045: X GBUFER(80)
046: CHARACTER*80 GBUF
047:
048: COMMON /ALL/ MOREIN, BCOUTNT, I, MAXPOS, OUTLIN,
049: X EOTEXT, BLANK, LINEFD. GBUFER, GBUF
050:
051: BUFPOS 0
052: FILL = 0
053: CXV '
054:
055: M,.OREN = 1
056:
057: I=1
058: K -1
059: DO\VHILE (K .LE. NLA.XPOS)
060: OUTLIN(K) =

061: K = K - I
062: ENDDO
063:
064: BCOUNT- 1

144

-- "7

V7-c--- -

065: K 1
066: DOWHIL.E (K .LE. 80)
067: GBLTFER(K) = Z
068: K=K + 1
069: EN DDO
070:
071: DOWHILE (MOREIN)
072: CW = GCHAR()
073: IF ((CW .EQ. BLANK) OCR. (CW -EQ. LINEFD) .OR.
074: X (CW .EQ. EOTEXT)) THEN
075: IF (CW .EQ.- EOTEXT) THEN
076: MOREIN o
077: ENDIF
078: IF ((FILL+ 1+ET'POS) .LE. MNA-XPOS) THEN
0719: CALL Pi-LAR(BLANK)
080: FILL = FILL + 1
081: ELSE
082: CALL PCHAR(LINZEFD)
083; FILL =0
084: ENDIF
085: K=
086: DO WHILE (K LE. BUTPOS)
087: CALL PCHAR(BUFFER(K))
088: K =K + I
089: ENDDO
090: FILL = FILL + BIJFPos
091: BUFPOS=0o
092: ELSE
093: IF (BIUFPOS EQ. MA-XPOS) THEN
094: WR ITE(6,10)
095: 10 FORM'vAT(- **a**WORD TO LONG***')
096: M.vOREIN=I
097: ELSE
098: BUFPOS = BUPPOS +1
099: BUFFER(BUFPOS) =CXV

100: ENDIF
101: ENDIF
102. ENDDO
103: CALL PCHAR(LINEFD)
104: END
105:
106:
107: CHARACTER*i FUNCTION GCH-ALR(
108: INTEGER MATCH
109: CHARACTER*80 GBUFSTR
110:

11: INTEGER MOREIN, BCOUNT, 1, 'MAXPOS
112: CHARACTER*1 OUTLIN(31), EOTEXT. BLAN K, LfNEFD.
113: X GBUTER(80)
114: CHALRACTER*80 GBILT
115: COMMAON /ALL"/ NOREIN., BCOUNT. 1, \LAXMPOS, OUTLIN,
116: X EOTEXT, BLANK, LINEED, GBUTER, GBULF
117:
118: EQUIVLNCE (GBTSTR.GBUFER)
119:

145

120: IF (GBUFER(1) .EQ. -Z) THEN
121: READ(5,20) GBUF
122: 20 FORTMAT(A80)
123: C
124: C MIATCH(CARRAY,C) RETURNS 1 IF CHARACTER C IS IN

CHARACTER ARRAY

130: GBUFER(2) =EOTEXT

131: ELSE
132: C GBUFER(1) =GBTJF

133: GBIJFSTR = GBUF
134: ENDIF
135: ENDIF
136: GCHAR = GBUFER(BCOUNT)
137: BCOUNT = BCOUNT + I
138: END
139:
140:
141: SUBROUTINE PCHAR (C)
142: CHARACTER*1 C
143: CHARACTER*31 SOUT, OUTLINST
14.4: INTEGER K
145:
148: INTEGER MOREIN, BCQUNT, I, MAXPOS
147: CHARACTER*1 OUTLLN(31), GCHAR, EOTEXT, BLANK, LINEFD.
148: X GBUFER(80)
149: CHARACTER*80 GBEUF
150: COMM0vON /'ALL/ MOREIN, BCOtJNT, I, MAXPOS, OUTLIN.
151: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
152:
153: EQUIVALENCE (OUTLI.NST,OUTLIN)
154:
155: IF (C EQ. LIN1EFD) THEN
156: SOUT = OUTLINST
157: WRITE(6,40) SOUT
158: 40 FORMAT(' ',A31)
159: K=
160: DOWHILE (K .LE. -xfL,&XPOS)
161: OUTLIN(K)=
162: K K -
163: ENDDO0
164: =
165: ELSE
166: OUTLIN(I) =C

167: I= I-
168: ENDI F
169 END

Pro gram 2

1: INT %VD:TH =30,

148

r.~ ~r.. "~m'A tA y '-Y y-.r.w - ~;'' 'I 7 r~rrrr ~y' -J V rs rn r 'rrrw r r -- w-~- w p.. ". -r I ** .- .- '. '

2: HEIGHT =20,

3: GRIDWrD =61,

4: LARGENUM = 100000000I 5: STRING TICKSL61I
6: + +-------------+
8:

9: PROC SORT (INT ARRAY KEYBU-F, INT ARRAY FREEBTJF, INT N)h 10:
11: INTI1, MAXIP
12: INT ARRAY SRTKEYB(0oo), SRTFREEB(i00)
13:

14: I:= 0
15: WHILE I <NDO
16: SRTKEY3(I) := KEYBUJF(I)

17: SRTFREEB(I : FREEBTJF(I)

20:N

22: WHILE I > ODO
23: MIA.P := MiAXELE(SRTKEYB,I)
24: KEYBTJF(N-I) := SRTKEYB(MAXP)
25: FREEBTJF(N-I) := SRTFREEB(MLAX-P)
26: CALL REMOVE(SRTKEYB3,MAXP .1)
27: CALL REMvOVE(SRTFREEB,.MAXP,I)
28: I:==I-
29: END
30:
31:

32:
33: LNT FUING MlAXELE (INT ARRAY BUE, INT N) -

34:

35: INT 1, MA- XPTR, MAX
36:
37: MAkXPTR := -1
38: MAX := -LARGENUJM
39. 1= 0
40: WHILE I <NDO
41: IF BUF(I) > MAX
42: THEN

4-: END
46: 1:=1%

48: RETURN(MvAXPTR)

52: TNT FUNC NITNELE (TNT.ARRA-Y BLC. INT N)
53: '

54: CTNT 1. NIINPTR. MN

.56: NTLNPTR:=-

- - 47..................................... -:

57: LN := LARGENUM
58: I :- 0
59: WHILE I < N DO
60: IF BUF(1) < NN
61: THEN
62: NLN = BLF(I)

63: MIN'PTR I
64: END
65:
68: END
67: RETURN(MENPTR)
68:
69:
70:
71: PROC REMOVE (INT ARRAY BUF, INT PTR. INT N)
72:
73: INT I
74:
75: I := PTR
76: NHIKE I < N-i DO
77: BUT(I) := BLTF(I+1)

78: I :=I+
79: END
80:
81:
82:
83: INT FUNC ABS (INT VAL)
84:
85: IF VAL < 0
86: THEN
87: RETURN(-VAL)
88: ELSE
89: RETURN(VAL)
90: END
91:

92:
93:
94: ENT FUNC SLASH (INT TOP, INT BOT)
95:
96: INT RES
97:
98: RES := TOP/BOT
99: IF TOP < > RES*BOT AND.

100: (TOP > o..aN'D. BOT > 0.OR. TOP < o .AND. BOT < 0)
101: THEN RES := RES -- 1
102: END
103: RETURN(RES)
104:
105: INT FUNC MOD (INT N, INT NI)
106:
107: D; T VAL
108:
109: VAL := N-NNI*NI
110: IF VAL < 0
111: THEN

148

112: VAL := VAL + M
113: END
114: RETURN (VAL)
115:
116:
117: PROC NLIN
118:
119: CHAR ARRAY GRID(61)
120: STRING STR[81]
121: INT ARRAY XVAL(100), YVAL(100)
122: INT I, J, NUMOBS, MAXY, MAXX, MINX, HORISP, VERTSP, VLINE
123:
124: I:= 0
125: VHILE .NOT. EOI DO
126: READ(XVAL(I),YVAL(I))
127: I:= I+ 1
128: END
129: NUMOBS := I
130:
131: CALL SORT(YVAL.XVAL,NM-L lOBS)
132: MA.XY := YVAL(0)
133: VERTSP := SLASH(MAXY,HEIGHT)
134:
135: MAXX : = XVAL(MLAXELE(XVAL,NUMOBS))
136: MI.NNX:- XVAL(MINELE(XVAL,NUMIOBS))
137: IF ABS(MINX) > ABS(MAXX)
138: THEN
139: HORISP :-= SLASH(ABS(MINX),VIDTH)
140: ELSE
141. HORISP :- SLASH(ABS(MLAX-X),NVIDTH)
142: END
143:
144: STR := X A'XIS'
145: NVRITE(STR,SKIP)

146: I:= 0
147: VLINE := HEIGHT
148: VHILE VLINE > 0 DO
149:
150: J:= 0
151: IF MOD(VLINE,5) =0
152: THEN
153: UNPACK(TICKSGRID)
154: ELSE
155: WHILE J < GRIDWD DO
156: GRID(J) =

157: J: J -1
158: END
159: END
160:
161: VLLN-E : -LINE-
162:
163: WHILE VLINE.\%ERTSP <- Y'l(I DO
164. IF X-'AL (1) > --0

165: THEN
166 GPIIs\\IDTI{ - SL..L_' \V \LI.E1OISP -

1419

167: ELSE
168: GRID(WIDTH - SLASH(-XVAL(I),HORISP))
169: END
170: I:= I+ 1
171: END

172:
173: GRID(WIDTH) :-

174: PACK(GRD,STR)

175: WRITE(STR,SKIP)
176: END

177:
178: STR

179: TLNPACK(STR,GRID)
180: WHILE 0 <= YVAL(I) .AND. I <-- NLrMOBS DO

181: IF XVAL(I) >= 0
182: THEN
183: GRID(WIDTH + SLASH(XVAL(I),HORISP)) := .
184: ELSE
185: GRID(WIDTH - SLASH(-XV.AL(I),HORISP)) : ,

186: END

187: I : I+ 1
188: END
189:
190: PACK(GRID,STR)
191: WRITE(STR,SKIP)
192: STR := Y AXIS'
193: WRITE(STR,SKIP)

194:
195: START MLALN

Program 3

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTIONS

DRIVER, GETARG,
002: C CHAREQ, CODE. AND PRINT. THEIR SOURCE CODE IS

DESCRIBED AND
003: C INCLUDED AT THE END FOR COMPLETENESS.

004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS

INCLUDE A LEADING
005: C AND REQUIRED '' FOR CARRIAGE CONTROL
006: C
007: INTEGER POOL(7), LSTEND

008: INTEGER LISTSZ
009: C
010: CONMON /ALL/ LISTSZ
011: C
012: C
013: LISTSZ = 5
014: CALL DRIVER (POOL, LSTEN-D)
015: STOP

016: END
017: C
018: C
019: C -F-NCTION ADFRST (POOL, LSTEND. I)

150

020: INTEGER ADFRST
021: INTEGER POOL(7), LSTEND, I
022: INTEGER LISTSZ
023: COMLMON /ALL/ LISTSZ
024: C
025: INTEGER A
026: C
027: IF (LSTEND .GT. LISTSZ) THEN
028: LSTEND - LISTSZ - 1
029: ENDIF
030: LSTEND = LSTEND + 1
031: A = LSTEND
032: DOWHILE (A .GE. 1)
033: POOL(A+I) - POOL(A)
034: A = A- 1
035: ENDDO
036: C
037: POOL(l) - I
038: ADFRST =LSTEND
039: RETURN
040: END
041: C
042: C
043: FUNCTION ADLAST (POOL, LSTEND, I)
044: INTEGER ADLAST
045: INTEGER POOL(7), LSTEND, I
046: INTEGER LISTSZ
047: COvfON /ALL/ LISTSZ
048: C
049: IF (LSTEND .LE. LISTSZ) THEN
050: LSTEND = LSTEND + I
051: POOL(LSTEND) = I
052: ENDIF
053: ADLAST - LSTEND
054: RETURN
055: END
056: C
057: C
058: FUNCTION DELFST (POOL, LSTEND)
059: INTEGER DELFST
060: INTEGER POOL(7), LSTEND
061: INTEGER LISTSZ
062: COLON iALL, LISTSZ
063: C
064: INTEGER A
065: IF (LSTEN'D .GT. 1) THEN
066: A = I
067: LSTEND = LSTEND - I
068' DOWHILE (A LE. LSTEND)
069: POOL(A) = POOL(A-1)
070: A = A - 1
071: ENDDO
072: ENDIF
073: DELFST - LSTEND
074: RETURN

........................,

075: END

076: C
077: C
078: FUNCTION DELLST (LSTEND)
079: INTEGER DELLST
080: INTEGER LSTEND
081: C
082: IF (LSTEND .GE. 1) THEN
083: LSTEND = LSTEND - 1
084: ENDIF
085: DELLST = LSTEND
086: RETURN
087: END
088: C
089: C "

'.090: FUNCTION FIRST (POOL, LSTEND)

091: INTEGER FIRST
092: INTEGER POOL(7), LSTEN'D
003: C2

094: IF (LSTEND .LE. 1) THEN
095: FIRST = 0

096: ELSE
097: FIRST = POOL(l)
098: ENDIF
099: RETURN
100: END
101: C
102: C
103: FUNCTION EIPTY (LSTEND)
104: INTEGER EMPTY
105: LNTEGER LSTEND
106: C
107: IF (LSTEND .LE. 1) THEN
108: EMPTY =1
109: ELSE
110: EMPTY 0

Ill: ENDIF
112: RETURN
113: END
114: C
115: C
116: FUNCTION LSTLEN (LSTEND)
117: INTEGER LSTLEN
118: INTEGER LSTEND

119: C

120: LSTLEN - LSTEND - 1
121: RETURN
122: END
123: C
12-1: C
125: FUNCTION NEWLST (LSTEND)

126: INTEGER NEWLST
127: INTEGER LSTEND
128: C

129: NEWLST 0

152

130: RETURN
131: END
132: C
133: C
134: SUBROUTINE REVERS (POOL, LSTEND)
135: INTEGER POOL(7), LSTEND
136: C
137: INTEGER I, N
138: C
139: N = LSTEND
140: 1
141: DOWHILE (I .LE. N)
142: POOL(I) = POOL(N)
143: N= N -1
144: 1= I+ 1
145: ENDDO
146: RETURN
147: END

Program 4

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE ROUTINES
DRIVER, STREQ, WORDEQ,

002: C NXTSTR, ARRCPY, CHARPT, BEFORE, CHAREQ, AND WRDBEF.
THEIR SOURCE

003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR
COMPLETENESS.

004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS
INCLUDE A LEADING

005: C AND REQUIRED ' FOR CARRIAGE CONTROL
006: C THE SFORT LANGUAGE CONSTRUCT '.IF (EXPRESSION)' BEGINS

A BLOCKED
007: C IF-THEN[-ELSE] STATEMENT, AND IT IS EQUIVALENT TO

THE F77
008: C 'IF (EXPRESSION) THEN'.
009: C
010: CALL DRIVER
011: STOP
012: END

013: C
014: C
015: SUBROUTINE NLALN'SB
016: C
017: LOGICAL*l U$KEY(3),U$AUTH(11),U$TITL(58),U$YEA-R(2),IU$ACTN(1)
018: LOGICAL*1 M$I(EY(3),M$AUTH(11),M$TITL(58),.M l$YEAR(2)
019: LOGICAL*1 ZZZ(3), LASTUK(3), LASTNII(3)
020: LOGICAL*I STREQ, CHAREQ, BEFORE, CI-LARPT
021: INTEGER I
022: C
023- LOGICAL*I WORD(500,12). REFKEY(1000.3)
024: INTEGER NUMWDS. NL.'IREF, PTR(500), NEXT(OOO)
025: CON.ION VORDS/ WORD, REFKEY. N'-MNVDS, NU-NIREF. PTR. NEXT
026: C
027- NVRITE(6.290)
028:290 FORLMAT(•.' UPDATED LIST OF tASTER ENTRIES')

153

029: DO0300 1=1, 3
030: LASTMK(I) = CHARPT(''
031: LASTUK(I) =CHARPT(''
032: ZZZ(I) = CHARPT('Z')
033: 300 CONTINrUE
034: C
035: NtIYMWvDS =0

036: NUMfREF =0

037: CALL GETNM(MKEY,MAUTH,M$TITL. M$YEARLASTMK)
038: CALL GETNUP(UKEY,UAUTH,U$TITL,U$SYEAR,U$ACTN,LASTUK)
039: C
040: DOWHILE ((.NOT.(STREQ(M$KEY.ZZZ,3))) .OR.
041: X (.NOT.(STREQ(U$KEY.ZZZ,3))))
042: IF (STREQ(U$'KEY,M$KEY,3))
043: IF (.NOT.(CHAREQ(U$ACTN(1),'R')))
044: WRITE(6.100) U$KEY
045: 100 FORINAT(' ','KEY ',3A1,' IS ALREADY IN FILE')
046: ENDIF
047: CALL OUTPUT(UKEY,UAUTH,U$TITL ,U$YEAR)
048: CALL DICTUP(UKEY,UTITL,58)
049: CALL GETNM-v(MSIKEYM$AUTH,M'v$TITL, .M$YEAR,LASTMIK)
050: CALL GETNUP(UKEY,UAUTH,U$TITL .U$YEAR,U$ACTN ,LA.STUKIr)
051: ENDIF
052: C
053: IJF (BEFORE(M$KEY,3,U$KEY,3))
054: CALL OUTPUT',MKEY,MNAUTH,.M$TITL ,M\$YEAR)
055: CALL DICTUPNMSKEY,M$TITL,58)
056: CALL GETNM(.MSKEY, M$AUTH,.M$TITL .M$YEAR,LASTNM)
057: ENDIF
058: C
059: -IF (BEFORE(U$KEY,3A .$KEY,3))
060: -IF (CHAREQ(U$ACTN(1),'R'))
061: WVRITE(6,110) U$KEY
062: 110 FORIMAT(' ','UPDATE KEY ',3A1,' NOT FOUND')
063: ENDIF
064: CALL OUTPUT(UKEY,UAUTH,U$TITL ,U$YEAR)
065: CALL DICTUP(UKEY,UTITL,58)
066: CALL GETN-UP(UKEY,UAUTH, U$TITL ,U$YAR,U$ACTN,LASTUKC)
067: ENDIF
068: ENDDO
069: C
070: CALL SRTWDS
071: CALL PRTWVDS
072: RETURN
073: EN D
074: C
075: C
076: SUBROUTINE GETNM%(KEY.AUTH,TITL .YEAR.LAST%1n{)
077: LOGTCALql KEY(3),AUTH(11),TITL(58),YEAR(2),LA-STUiK(3)
078: C
079: LOGICAL~1 SEQ. UNLLNE(80)
080: LOGIC.A.L~ BEFORE. CHA-RPT. CHAL-REQ
081: LOGICAJL*i GO$Ml. GO$U 4

082: COMvMON DRIV,, GO$MI. GO$U
083: C

154

77

084: SEQ 1
085: DOWHILE (SEQ)
086: .IF (GO$M)
087: C
088: C READ FROM THE MASTER FILE
089: C
090: READ(10,200,END=299) INLINE
091: ELSE
092: C
093: C SEE REMARK ABOUT THE CHARACTER '%' LATER IN THE ROUTINE.
094: C
095: I-LINE(i) = CHARPT('%')
096: ENDIF
097: 200 FORMAT(80A1)
098: DO 210 1 = 1, 3
099: KEY(I) = INLINE(I)
100: 210 CONTINUE
101: DO 220 I - 1, 11
102: AUTH(I) = INLINE(3+I)
103: 220 CONTINUE
104: DO 230 1 -1, 58
105: TITL(I) = ISTLINE(14+I)
106: 230 CONTINUE
107: DO 240 1 = 1, 2
108: YEAR(I) = INLINE(72+I)
109: 240 CONTINUE
i0: C
ii: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT

THE CHARACTER '%'

112: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS
FOR MULTIPLE

113: C SETS OF IN'PUT CASES.
114: C
115: .IF ((.NOT.(CHAREQ(KEY(1),'%'))) .AND.
116: X (BEFORE(KEY,3,LASTNEK,3)))
117: WRITE(6,250) KEY
118:250 FORMAT(' ','KEY ',3A1,' OUT OF SEQUENCE')
119: ELSE
120: CALL ARRCPY(KEY,LASTMK,3)
121: SEQ = 0

122: ENDIF
123: -IF (CHAREQ(KEY(1),'%'))
124: SEQ = 0
125: DO 270 1 = 1, 3
126: KEY(I) = CHARPT('Z')
127: 270 CO NTUNUE
128: ENDIF
129: ENDDO
130: RETURN
131: 299 CONTINUE
132: GO$VM = 0
133: DO 260 1 = 1. 3
134: KEY(I) = C-RPT('Z')
135: 260 CONTINL-E
136: RETURN

155

i:I S.

137: END
138: C
139: C
140: SUBROUTINE GETNUP(KEYAUTH,TITL,YEAR.ACTN,LASTUK)

141: LOGICAL*i KEY(3).AUTH(1 1),TITL(58),YEAR(2),ACTN(1),LASTU-K(3)

142: C
143: LOGICAL*I SEQ, I LIN E(80)

144: LOGICAL*I BEFORE, CI-LARPT, CHAREQ
145: LOGICAL*I GOM, GOU

148: CON, MON /DRIV/ GOSM, GO$U
147: C

148: SEQ = I
149: DOWHILE (SEQ)
150: IF (GO$U)

151: C
152: C READ FROM THE UPDATES FILE

153: C
154: READ(11,200,END=299) LNLINE
155: ELSE
156: C
157: C SEE RENARK ABOUT THE CHARACTER %' LATER IN THE ROUTINE.
158: C
159: INLINE(1) = CHARPT('%')

160: ENDIF
161: 200 FORMAT(80A1)
162: DO 210 1 = 1, 3
163: KEY(I) = INLLNE(1)
164: 210 CONTINUE
165: DO 220 1 = 1, 11
166: AUTH(1) = LNLLNE(3-T-I)

167: 220 CONTINUE

168: DO 230 I = 1, 58
169: TITL(I) = ILNE(14--I)
170: 230 CONTINUE

171: DO 240 1 = 1, 2
172: YEAR(I) = ENLrNE(72+I)

173: 240 CONTINUE
174: ACTN(1) = LNLINE(75)
175: C
176: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT

THE CHARACTER '%'
177: C AS THE FIRST C-lARACTER ON A LINE. THE DRIVER USES THIS

FOR MULTIPLE
178: C SETS OF I-N-PUT CASES.

179: C
180: -IF ((.NOT.(CHAREQ(KEY(1), '% '))) .A,-D.
181: X (BEFORE(KEY,3,LASTL-K, 3)))

182: NVRITE(6,250) KEY
183: 250 FORMAT(' ..KEY ',3Al1' OUT OF SEQUENCE')

184: ELSE
185: CALL ARRCPY(KEY.LAST I{,3)

186: SEQ = 0

187: ENDIF
18R: IF (CI-LREQ(KEY(1).'c%))

189: SEQ - 0

156

- . .*.]

190: DO 2701 =1, 3
191: KEY(I) = CHARPT('Z')
192: 270 CONTINUE
193: ENDIF .
194: ENDDO
195: RETURN
196: 299 CONTINUE
197: GO$U = 0
198: DO 260 1 - 1, 3
199: KEY(I) = CHARPT('Z')
200: 260 CONTINUE
201: RETURN
202: END
203: C
204: C
205: SUBROUTINE OUTPUT(KEYAUTH,TITLYEAR)
206: LOGICAL*1 KEY(3), AUTH(11), TITL(58), YEAR(2)
207: C
208: WRITE(6,200) KEY, AUTH, TITL, YEAR
209:200 FORMAT(' ',3A_,1Al,58A1,2A1)
210: RETURN
211: END
212: C
213: C
214: SUBROUTINE PRTWDS
215: C
216: LOGICAL*I WORD(500,12), REFKEY(1000,3)
217: INTEGER NUrMWUDS, NUMREF, PTR(500), NEXT(1000)
218: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMfREF, PTR, NEXT
219: C
220: C THE ABOVE GROUP OF DATA STRUCTURES SPMULATES A LLN-KED

LIST.
221: C WORD(I,J) IS A KEYWORD - J RANGING FROM 1 TO 12
222: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT I-LAS

AS A
223: C KEYWORD WORD(I,J),J=1,12
224: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY

THAT HAS
225: C AS A KEYWORD WORD(I,J),J=1,12
226: C REFKEY(NEXT(NEXT(PTR(I))),K),K-I,3 IS THE THIRD ... ETC.
227: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER

KEYS FOR
228: C THE PARTICULAR KEYVORD
229: C
230: INTEGER I. J
231: LOGICAL*1 FLAG
232: C
233: WRITE(6,200)
234: 200 FORMAT(' '' KEYWORD REFERENCE LIST')
235: DO 210 1 = 1, N-UMVWDS

236: FLAG 1
237: %VRITE(6.220) (NVORD(I.J).J-1.12)
238: 220 FORMAT(' ',12Al)
239: LAST - PTR(1)
210. DOWHILE (FLAG)

157

.' .-..-..-

4.

241: WRITE(6,230) (REFKEY(LAST,J),J=1,3)
242: 230 FORMAT(... ,3AI)
243: LAST = NEXT(LAST)
244: .IF (LAST .EQ. -1)
245: FLAG - 0
246: ENDIF
247: ENDDO
248: 210 CONTINUE
249: RETURN
250: END
251: C
252: C
253: SUBROUTINE DICTUP(KEY,STR,STRLEN)
254: LOGICAL*I KEY(3), STR(120)
255: INTEGER STRLEN
256: C
257: LOGICAL*l WDLEFT, FLAG, OKLEN, NEXTVD(120), WORDEQ
258: INTEGER LPTR, NXTSTR, LEN, LAB, I, K
259: C
260: LOGICAL*I WORD(500,12), REFKEY(1000,3)
261: INTEGER NTJMWDS, NUMREF, PTR(500), NEXT(1000)
262: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
263: C
264: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A

LINKED LIST.
265: C WORD(I,J) IS A KEYWORD - J RANGING FROM I TO 12
266: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS

ASA
267: C KEYWORD WORD(I,J),J=1,12
268: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER IKY

THAT HAS
269: C AS A KEYWORD WORD(IJ),J=1,12
270: C RFFKEY(NEXT(NEXT(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
271: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER .j

KEYS FOR
272: C THE PARTICULAR KEYWORD
273: C
274: WDLEFT - 1
275: LPTR = 1
276: C
277: DOWHILE (WDLEFT)
278: FLAG = 1
279: OKLEN = I
280: LEN = NXTSTR(STR.STRLEN,LPTR.NEXTWVD.120)
281: .IF (LEN .EQ. 0)
282: WDLEFT = 0
283: ENDIF
284: C
285: .IF (LEN .LE. 2)

286: OKLEN = 0
2A7: ENDIF
288: C
289: .JF (OIRLEN)
290: 1 = 1
291: DOWHILE ((I .LE. NULNIW DS).A-ND. FLAG)

158

.-..

• .. '. .¢ , -? '.' .. . - r'.L .'" . . ," ." ." 1 t ,- . t _: . ,,..:.S' . .t S " . . " " " "

292: .IF (WORDEQ(NEXTWD,I))
293: LAB I,294: FLAG = 0

295: EN-DIF :
296: 1 + I .

, 297: ENDDO e
~298: .IF (FLAG)-,

299: NUJMVWrS =NUTMWDS + I ',

300: NUMEF - NUMREF + 1
301: DO 300 K= 1, 12
302: WORD(NUMWDS,K) - NEXTWD(K)
303:300 CONTINUE.

304: PTR(NUMWDS) = NUMREF
305: DO 310 K = 1, 3

306: REFKEY(NUMREF,K) KEY(K)
307: 310 CONTINUE
308: NEXT(NUEREF)=-I
309: ELSE
310: NUMREF = NUJMREF + I
311: DO 320 K = 1, 3
312: REFKEY(N UMREF,K) - KEY(K)
313: 320 CONTINUE
314: NEXT(NUMREF) = PTR(LAB)
315: PTR(LAB) - NUIREF
316: END)IF
317: ENDIF
318: ENDDO
319: C
320: RETURN
321: END
322: C
323: C
324: SUBROUTNE SRTWDS
325: C

326: LOGICAL*1 WORD(500.12). REFKEY(1000.3)
327: INTEGER NUvfWDS, NUMREF, PTR(500), NEXT(1000)
328: CONL-DON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
329: C
330: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A

LINKED LIST.
331: C VORD(I.J) IS A KEYWORD - J RANGING FROM I TO 12
332: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS

333: C KEYWORD WORD(I.J),J=i,12
334: C REFIKEY(NEXT(PTR(I)).K),K 1.3 IS THE SECOND 3 LETTER KEY

THAT HAS
335: C AS A KEYWVORD WORD(I,J),J=1,12
336: C REFIKEY(NEXT(NEXfT(PTR(I))),K),K=1,3 IS THE THIRD .. ETC.
337: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER

KEYS FOR
338: C THE PARTICULLAR KEYWORD
339: C
340: INTEGER I. J, K. LAB, LOWERB, UPPERB
341: LOGICAL 1%VRDBEF. NEXTWVD(12)
342: C

159

. ... - . . .

343: UPPERB - NUMWDS - 1
344: DO 400 1 = 1, UPPERB
345: LOWERB = I + i
346: DO 410 J = LOVERB, NUNIVDS
347: .IF (WRDBEF(J,I))
348: DO 300 K = 1, 12
349: NEXTVD(K) = WORD(I,K)
350: 300 CONTINUE
351: LAB = PTR(I)
352: DO 310 K = 1, 12
353: WORD(I,K) = WORD(J,K)
354: 310 CONTINUE
355: PTR(I) = PTR(J)
356: DO 320 K = 1, 12
357: WORD(J,K) NEXTVD(K)
358: 320 CONTINUE
359: PTR(J) - LAB
360: ENDIF
361: 410 CONTINUE
362: 400 CONTINUE
363: C
364: RETURN
365: END

6.3. Appendix C. Operational Testing Procedure Applied in the

Cleanroom Study

This section describes the operational testing process applied to the pro-

jects in the Cleanroom empirical Investigation. After consulting the references

[Thayer, Llpow & Nelson 78, Duran & Ntafos 81, Dyer 82a, Dyer 82a, Dyer

82b]., the following procedure was adopted to meet the particular cir-

cumstances.

6.3.1. Test Data Selection

The first step In the test data generation process is to define the operation-

al profile of the system. An Initial attemrt to define the operational Inputs to

the message system and their serialization requirements resulted In the regular

expression In Figure 37.

160

SQE . 1'; 0 W I . Wr K K7 V.- 47 7 -7 KV W- .U W .-;7 -,C -m -- ,7 -7 -

'I.

Figure 37. Regular expression of logical inputs to the system in a single user
session.

send
group-send
(read, find) (respond, hold, delete)
reset
names
groupquery

sIgnon adduser signoff
remove_user
authorIzeuser
add_ roup
remove_group
Invalid

This then led to a transition diagram of functional paths through the system.

There were distinct transition arcs In the diagram to correspond with distinct

functional states of the system. The system states were described as either sys-

tem processing or operating states. A distinction In the processing of data that

Is transparent to the user Is a system "processing state" (e.g., whether or not a

target's queue Is empty). A distinction In the processing of data that a user was

directly responsible for Is a system "operating state" (e.g., giving an Incorrect

password). The arcs leaving a given node were each assigned a frequency such

that the total of all outgoing arcs from a given node was one. This frequency

assignment was accomplished by polling eleven well-seasoned users of the

UnIversity of Maryland Vax 11/780 mailing system. Now that each path

through the system had a (subjective) probability, the schedule of presentation

161

7i

and the test sample size needed to be considered.

The sequence of releases and their associated functionality for one of the

teams appears In Figure 38.

Figure 38. Schedule of Deliveries for a Sample Team.

Groupings of Capabilities

B_00 signon,slgnoff

B._0 adduser,remove user,authorizeuser
B_1 names,lnvalld_cmds
B_2 sendmsg,readmsg,flnd_msg,hold_msg,

deljmsg, respond,resetqueue
B_3 groupsend,groupadd,group_remove,

groupquery
Release Function Group

B00 B-0 B-1 B-2 B-3

- ---------- ---------- ----------+ ---------

S.----------- +---------- ---------- ----------.2 x I . I 1 I :
----- ---------- ---------- ----------------------

3 xxI I I xxi '

------- +---------------------- ---------- ----------- I4I xx I xx xx x

----- ---------- + ---------- + ---------- + ----------- I

(Note that since each team could chose Its own delivery schedule, the test gen-

eratlon process needed to be reevaluated ror each team.) The graph from Figure

,37 has been cut and reconstructed accordin to the grouplngs of capablIltles

g;Iven In Figure 38. Be aware that the probabIlity for any gIven path thrnuh

the system Is preserved In such a process. Fhe newly created ares5 ror tlhl(

162

groups are labeled with the probablilties that a given system Input will Invoke

any function In a particular group (see bottom of Figure 39). Notice that for

any sample size or less than 200, the expected value of the number of' test cases

Invoking a -privileged- runction, group B...O, would be less than one. Since the

relative Input frequency for the "privileged" group of commands Is dispropor-

tionate to their Importance (you would not be able to build and maintain a net-

work of subscribers without them), a separate schedule for testing them Is creat-

ed. Figure 39 shows the two schedules for testing.

Figure 39. Two Testing Schedules for a Sample Team.

RelIease
Function Group

Schedule I
BOO0* B-..0 B-1 B-2 B-3

--------------------- ---------- ---------------------- +

---------- ---------- ---------- ---------- ----------- +

--------------------- --------------------- ----------- +
Schedule 11

--- ----------- +

31 xx MC MCx

4 xx 'M McIxxx
-- --------------- --------------------- -----------

IV IX I-- KC I
------------------- ----------- ----------------------

Operational
frequency .005 .129 .686 .180 1.000

\ ote that the functions In B_00 are implicitly tested In
all test cases.

163

.. - - .- ~

~~''v~~~-7- -, -7~~ 7 .

Since Schedule I Is a special case, first consider Schedule II with the func-

tion group probabilities at the bottom of the columns. In order to accomplish

the concentration of test cases on the newly released functions, each functional

group Is assigned a relative weighting that It should have in the test subset
a-

selections for each of the releases. The weights In each of the columns should

sum to one.

Release Function Group

B-0 B-I B2 B_3

-- I
3 11/3 1 0 11/2 10

------- +----------- ----------------------
4 1/3 12/3 11/3 I0

------- +----------------------------------I
5 11/3 11/3 1/8 1

--------- +----------------------+-----------
.005 .129 .686 .180

The welghts In a given column are then multiplied by the total associated fre-

quency for that functional group at the bottom of the column.

Release Function Group

B_0 B1_i B 2 B_3

-------------------- ----------- ------------
3 1/3 .001 I 0 0.0 1/2 .343 0 0.0

------- ------------ ------------ ------------

4 1/3 .002 I 2/3 .086 1 1/3 .229 1 0 0.0

1-------------------- ----------- ------------ I
1/3 .002 f 1/3 .043 1 1/6 .114 1 .180

.005 .129 .686 .180

The entries (not the weights) In the above table are the probabilities that an In-

put will be selected to test a function in a given (roup on a given release. Suim-

164

:j_ ?" ,, 2 - -: " ' " .. " " "' "" ". . . . -.. .-. :..- . 1.

mIng the rows horizontally reflects the total distribution across the releases.

Release Function Group

B_0 B1 B2 B3

3 1/3 .001 0 0.0 1/2 .343 0 0.0 .344

4 1/3 .002 12/3 .086 1 1/3 .229 0 0.0 .317

-- ------------------------------ +-------------
5 1/3 .002 1 1/3 .043 1 1/8 .114 1 .180 .339

---- -+-- --------- +- ------------ +------------
.005 .129 .686 .180 1.000

The above process represents the partitioning on the Input frequencies for the

various functional groupings by release.

Hopefully at some time we will be able to specify the size of our test sam-

ple from the reliability goals of the project. For the purposes of testing these

projects, our experience has led us to choose a test sample size of 100 cases per

project. If ten of these cases (arbitrarily) will be used in the testing of Schedule

I, ninety will remain for Schedule II. Multiplying ninety by the frequencies In

the right hand column of the above table for Schedule 11 led to the sample sizes

of 31, 29 and 30 test cases for releases 3, 4 and 5, respectively. The above pro-

cess has been undertaken to test the expanding system capabilities, while con-

centrating on newly released functions and malntalnlng the composite Input dis-

trlbutlon. Figure 40 summarizes the results from this stratlftcatlon process. In

testing release 1, only the slgnon and slgnoff functions (group B_00) were avail-

able and hence only one test case ls needed. The remaining nine test eases are

applied to release 2 to test the group of "privileged" t'unctlons B 0. The arcs

165

. .j

V. 13 7 P .W .

B_0 B_3 are reassigned the frequencies given In Figure 40 when test data

are being generated for the appropriate release.

Figure 40. Arc Frequency Assignment as a Result of Stratification.

Release Arc Frequency Assignment for #Test

Funct ion Group Cases
B00 B0 B i _2 B_3

10.0

.1 1.0 0.0 0.0 0.0 0.0 1

2 0.0 1.0 0.0 0.0 0.0 9
3 3 0.0 .003 0.0 .997 0.0 31

4 0.0 .006 .271 .723 0.0 29

5 0.0 .005 .127 .336 .531 30

100
*Recall that the functions In B_00 are Implicitly tested In

all test cases.

.After this moderately complex procedure, test data can finally be created.

\Vlth respect to the revised arc frequency assignments above, a set of test data

of the appropriate size Is randomly generated for each release.

6.3.2. Testing Process and Failure Observation

The actual testing process consists of three phases for each test case: sys-

tem -state" setup (recall the system processing and operating "states"

described earlier), executing the actual test, and verffying the result of the test.

Since our concern In the reliability analysis Is with failure-free execution Inter-

vals, the cpu-tlme for just the second phase. the actual test case execution, Is

Included In our calculation.

166

The projects developed were tested Interactively, with each given test case

having one of four possible outcomes. If the system performed to expectations

on the test case, the outcome was a 'success.' If the system's performance did

not meet expectations, the outcome was a 'failure' and was rated according to

severity: 1 - product Inoperable, 2 - major function In the product inoperable, 3

= some part of a major function Inoperable, or 4 - cosmetic type failure. If the

outcome was a 'failure' but the same failure was observed on an earlier test case

In this release, the outcome was termed a 'duplicate failure.' Finally, If the test

case was not able to be executed because we were unable to create the proper

system "state" (on account of failures In this release), the outcome of the test

case was 'deferred.' Test cases with outcomes of 'failure,' 'duplicate failure,' or

'deferred' were Included In the test set of the next release.

6.3.3. Failure Counting

Several software reliability models are based on a product's history of

failure-free execution Intervals [Jelinski & Moranda 73, Dyer & :vfills 82, Goel

821. In order to calculate these Intervals, a consistent interpretation of what

constitutes a failure must be determined. A method of "sorting" or masking

failures by associated product release, product function or by faIlure severlty

has been recognized [Dyer 811. This technique enables calculation of rellablilty

estimates for certaln functlons wlthln a system, Including only those failures

worse than a certain severity, etc. In addition to these options, a more fiunda-

mental set of questions needs to be considered. Such as, whether or not Cupll-

167

• . - - ". . . . • o . - . . ,

cate failures should be counted, or whether the execution time for regression

(previously failed) tests should be included. Several of these failure counting is-

sues are summarized In Figure 41.

Figure 41. Failure Counting Issues.

Always Include cpu time in failure-free interval for (unless masked)
successful non-regression tests

first occurrence of distinct failures

Never include cpu time for
deferred test cases

Options:

A. Include cpu time from regression tests:
1. Just from successful?
2. just from failed?

B. Duplicate failures:
1. Include duplicate failures observed In the same release?

2. include duplicate failures observed in later releases?
C. Execution interval that terminated with end of testing (assuming did

not end with a failure):
1. discard?

2. include as failure-free execution Interval -- treat end of testing as

a failure?
3. include as failure-free execution Interval of twice the length --

treat end of testing as a failure twice as far off?

D. Masking:
1. by testing schedule?
2. by product release?
3. by product function?

4. by failure severity?

168

p dI'

7. References

[Adams 841
E. N. Adams, Optimizing Preventive Service of Software Products,
IBM Journal of Research and Development 28, 1, pp. 2-14, Jan. 84.

[Albin & Ferreol 82]
J.-L. Albin and R. Ferreol, Collecte et analyse de mesures de loglcel-
(Collection and Analysis of Software Data), Technique et Science In-
formatiques 1, 4, pp. 297-313, 1982. (Ralro ISSN 0752-4072)

[Bailey & BasIll 81]
J. W. Bailey and V. R. BasIll, A Meta-Model for Software Develop-
ment Resource Expenditures, Proc. Fifth Int. Conf. Software Engr.,
San Diego, CA, pp. 107-115, 1981.

[Bailey 84]

J. W. Bailey, Teaching Ada: A Comparison of Two Approaches,
Dept. Com. Sel., Univ. Maryland, College Park, MD, working paper,
1984.

[Baker 72a
F. T. Baker, System Quality Through Structured Programming,
AFIPS Proc. 1972 Fall Joint Computer Conf. 41, pp. 339-343, 1972.

[Baker 72b]
F. T. Baker, Chief Programmer Team Management cf Production
Programming, IBM Systems J. 11, 1, pp. 131-149, 1972.

[Baker 81]
F. T. Baker, Chief Programmer Team,, pp. 249-254 In Tutorial on
Structured Programming: Integrated Practices, ed. V. R. Basill and
F. T. Baker, IEEE, 1981.

[Ba.slli et al. 85]
V. R. BasIll. E. E. Katz, N. NI. Panllllo-Yap, C. L. Ramsey, and S.
Chang, A Quantitative Characterization and Evaluation of a Soft-
ware Development In Ada, (to appear IEEE Computer, September
1985)

[Basill & Turner 76]
V. R. Baslll and A. J. Turner, SLIPL-T A Struct ired Programming

Language, Paladin House Publishers. Geneva, IL, 1976.

169

[Baslli et al. 77]
V. R. Baslll, M. V. Zelkowltz, F. E. McGarry, R. W. Reiter, Jr., W.

F. Truszkowskl, and D. L. Weiss, The Software Engineering Labora-
tory, Software Eng. Lab., NASA/Goddard Space Flight Center,

Greenbelt, MD, Rep. SEL-77-001, May 1977.

[BaslII & Zelkowltz 78]
V. R. Basill and M. V. Zelkowitz, Analyzing Medium-Scale Software

Developments, Proc. Third Int. Conf. Software Engr., Atlanta, GA,

pp. 116-123, May 1978.

(Basill 801
Victor R. Baslll, Tutorial on Models and Metrics for Software

Management and Engineering, IEEE Computer Society, New York,

1980.

[Basili & Freburger 81]

V. R. Baslll and K. Freburger, Programming Measurement and Estl-

mation In the Software Engineering Laboratory, Journal of Systems

and Software 2, pp. 47-57, 1981.

[Basili & Weiss 81]
V. R. Basill and D. M. Weiss, Evaluation of a Software Require-

ments Document By Analysis of Change Data, Proc. F'fth Int. Conf.

Software Engr., San Diego, CA, pp. 314-323, March 9-12, 1981.

[Baslli & Reiter 81]
V. R. Basill and R. V. Reiter, A Controlled Experiment Quantita-

tively Comparing Software Development Approaches, IEEE Trans.

Software Engr. SE-7, May 1981.

[BasilI & DoerflInger 83]
V. R. Basill and C. Doerflinger, Monitoring Software Development

Through Dynamic Variables, Proc. COVIMPSAC, Chicago, IL, 1083.

[Baslll. Selby & Phillips 831

V. R. BasIll, R. WX. Selby, Jr., and T. Y. Phillips, MIetrlc Analysis

and Data Validation Across FORTRAN Projects, IEEE Trans. Soft-

ware Engr. SE-9, 6, pp. 652-663, N°ov. 1983.

[Baslli & Hutchens 83]
V. R. Basill and D. H. Hutchens, An Empirical Study of a Syntactic

Metric Family, Trans. Software Engr. SE-9, 6. pp. 664-672, Nov.
1983.

170

.: .-:. . .. : /.- -... . -- - . : . : -< ' :.: .. .-.

[Basill & Perrlcone 84]
V. R. BasIli and B. T. Perricone, Software Errors and Complexity:
An Empirical Investigation, Communications of the ACM 27, 1, pp.

42-52, Jan. 1984.

[Baslll & SelLy 84]
V. R. Basili and R. W. Selby, Jr., Data Collection and Analysis In

Software Research and Management, Proceedings of the American
Statistical Association and Biometric Society Joint Statistical Meet-
ings, Philadelphia, PA, August 13-10, 1984.

(BasllI & Ramsey 84]
V. R. Basill and J. R. Ramsey, Structural Coverage of Functional
Testing, Dept. Com. Scl., Univ. Maryland, College Park, Tech. Rep.
TR-1442, Sept. 1984.

[Baslli & Welss 84]
V. R. Basill and D. M. Weiss, A Methodology for Collecting Valid
Software Engineering Data*, Trans. Software Engr. SE-10, 6, pp.

728-738, Nov. 1984.

[Behrens 83]
C. A. Behrens, Measuring the Productivity of Compi:ter Systems De-
velopment Activities with Function Points, IEEE Trans. Software

Engr. SE-9, 6, pp. 648-651, Nov. 1983.

[Boehm 81]
B. W. Boehm, Software Engineering Economics, Prentice-Hall, En-
glewood Cliffs, NJ, 1981.

[Boehm et al. 84]
B. W. Boehm, T. E. Gray, and T. Seewaldt, Prototyping Versus
Specifying: A Multiproject Experiment, IEEE Trans. Software Engr.

S,-lO, 3, pp. 290-303, May 1984.

[Bowen 84]
J. Powen, Estimation of Residual Faults and Testing Effectiveness,
Seventh Minnowbrook Workshop on Software Performance Evalua-
tion, Blue Mountain Lake, NY, July 24-27, 1984.

[Box. Hunter, & Hunter 78]
G. E. P. Box. W. G. Hunter. and J. S. Hunter, Statistics for Experi-
menters, John Wiley & Sons, New York. 1978.

171

: ' *" " " " "................................ ..-- : :..:;:

[Brooks 80]
R. E. Brooks, Studying Programmer Behavior: The Problem of Prop-
er Methodology, Communications of the ACM 23, 4, pp. 207-213,
1980.

[Brooks 81]4

W. D. Brooks, Software Technology Payoff: Some Statistical Evl-

dence, J. Systems and Software 2, pp. 3-9, 1981.

[Buck 81]
F. 0. Buck, Indicators of Quality Inspections, IBM Systems Products
Division, Kingston, NY, Tech. Rep. 21.802, Sept. 1981.

[Callllau & Rubin 79]
R. Callllau and F. Rubin, ACM Forum: On a Controlled Experiment
In Program Testing, Communications of the ACAf 22, pp. 687-8,
Dec. 1979.

[Card et al. 82]
D. N. Card, F. E. McGarry, J. Page, S. Esllnger, and V. R. Basil],
The Software Engineering Laboratory, Software Eng. Lab.,
NASA/Goddard Space Flight Center, Greenbelt, MD Rep. SEL-81-
104, Feb. 1982.

[Chen 78]
E. T. Chen, Program Complexity and Programmer Productivity,
IEEE Trans. Software Engr., pp. 187-194, May 1978.

[Church 84]
V. Church, Benchmark Statistics for the VAX 11/780 and the IBM
4341, Computer Sciences Corporation, Silver Spring, MD, Internal
Memo, 1984.

[Cochran & Cox 50]
V. G. Cochran and G. M. Cox. Experimental Designs. John WXlley &

Sons, New York. 1950.

[Cochran 53]
W. G. Cochran, Sampling Techniques, John Wiley & Sons, Inc.,
1953.

LC rrlt S3]
P. A. Curr1t, Cleanroom Certification Model, Proc. Eight Ann. Soft-
ware Engr. Workshop, NASA/GSFC, Greenbelt, ND., Nov. 1983.

172

[Curtis et al. 79]
B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,
Measuring the Psychological Complexity of Software Maintenance
Tasks with the Halstead and McCabe Metrics, IEEE Trans. Software
Engr., pp. 96-104, March 1979.

(Curtis, Sheppard & Mlliman 79]
B. Curtis, S. B. Sheppard, and P. M. Milliman, Third Time Charm:
Stronger Replication of the Ability of Software Complexity Metrics
to Predict Programmer Performance, Proc. Fourth Int. Conf. Soft-
ware Engr:, pp. 356-360, Sept. 1979.

[Curtis 83]
B. Curtis, Cognitive Science of Programming, Sixth Minnowbrook
Workshop on Software Performance Evaluation, Blue Mountain
Lake, NY, July 19-22, 1983.

[Decker & Taylor 82]
W. J Decker and W. A. Taylor, FORTRAN Static Source Code
Analyzer Program (SAP) User's Guide (Revision 1), Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD, Rep.
SEL-78-102, May 1982.

[Duran & Ntafos 811
J. W. Duran and S. Ntafos, A Report on Random Testing*, Proc.
Fifth Int. Conf. Software Engr., San Diego, CA, pp. 179-183, March
9-12, 1981.

(Dyer 811
M. Dyer, Cleanroom Project Management Data, IBM-FSD Internal
Memo to H. D. Mills, October 16, 1981.

[Dyer- 82a]
M. Dyer, An Approach to Statistical Testing for Cleanroom Software
Development. IBM-FSD Tech. Rep. 86.0002, 1982.

[Dyer &1 Mills 82]
M. Dyer and H. D. Mills, Developing Electronic Systems with
Certifiable Reliability, Proc. NATO Conf., Summer, 1982.

[Dyer 82a]
vi. Dyer, Major System Mode 11 (M,[S'1l1) Testing, IB-FSD Inter-
nal Memo to H. D. Mills. May 18, 1982.

173

[Dyer 82b]
M. Dyer, Top-Down Random Testing, IBM-FSD Internal Memo to
H. D. Mills, June 21, 1982.

[Dyer 82c]
M. Dyer, Cleanroom Software Development Method, IBM Federal
Systems Division, Bethesda, MD, October 14, 1982.

[Dyer 83]
M. Dyer, Software Validation in the Cleanroom Development
Method, IBM-FSD Tech. Rep. 86.0003, August 19, 1983.

[Elshoff 84]
J. L. Elshoff, Characteristic Program Complexity Metrics, Proc.
Seventh Int. Conf. Software Engr., Orlando, FL. pp. 288-293, 1984.

[Endres 751
A. Endres, An Analysis of Errors and their Causes in Systems Pro-
grams, IEEE Trans. Software Engr., pp. 140-149, June 1975.

[Fagan 76]
M. E. Fagan, Design and Code Inspections to Reduce Errors In Pro-
gram Development, IBM Sys. J. 15, 3, pp. 182-211, 1976.

[Ferrentlno & Mills 77]
A. B. Ferrentino and H. D. Mills, State Machlnes and Their Seman-
tics in Software Engineering, Proc. IEEE COMPSAC, 1977.

[Feuer & Fowlkes 79]
A. R. Feuer and E. B. Fowlkes, Some Results from an Empirical
Study of Computer Software, Proc. Fourth Int. Conf. Software
Engr., pp. 351-355, 1979.

[Foster 80]
K. A. Foster, Error Sensitive Test Cases, IEEE Trans. Software
Engr. SE-6, 3. pp. 258-264. 1980.

[Gaffney & Heller 80]
J. E. Gaffney and G. L. Heller, Macro Variable Software Models for
Application to Improved Software Development Management. Proc.
Workshop on Quantitative Software Models for Reliability, Conplexi-

ty and Cost. IEEE Comput. Soclety, 1980.

174

-. . . -. a ~ ~ a ~ n_

[Gannon & Horning 75]
J. D. Gannon and J. J. Horning, The Impact of Language Design on
the Production of Reliable Software, Trans. Software Engr. SE-1,
pp. 179-191, 1975. -I.

[Gannon 77]
J. D. Gannon, An Experimental Evaluation of Data Type Conven-
tions, Communications of the ACM 20, 8, pp. 584-595, 1977.

[Gannon et al. 83]
J. D. Gannon, E. E. Katz, and V. R. BasIll, Characterlzlng Ada Pro-
grams: Packages, The Measurement of Computer Software Perfor-
mance, Los Alamos National Laboratory, Aug. 1983.

[Gloss-Soler 79]
S. A. Gloss-Soler, The DACS Glossary: A Bibliography of Software
Engineering Terms, Data & Analysis Center for Software. GrIffiss
AIr Force Base, NY 13441, Rep. GLOS-1, Oct. 1979.

[Goel 82]
A. L. Goel, Software Reliability and Estimation Techniques, Rome
Air Development Center, NY, Rep. RADC-TR-82-263, October 1982.

[Goel 831
A. L. Goel, A Guidebook for Software Reliability Assessment, Dept.
Industrial Engr. and Operations Research, Syracuse Unlv.. New
York, Tech. Rep. 83-11, April 1983.

[Goodenough & Gerhart 75]
J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data
Selection, IEEE Trans. Software Engr., pp. 156-173, June 1975.

[Gould & Drongowski 74]
J. D. Gould and P. Drongowskl, An Exploratory Study of Computer
Program Debugging, Human Factors 16, 3, pp. 258-277, 1974.

[Gould 7.51
J. D. Gould, Some Psychological Evidence on How People Debug
Computer Programs, International Journal of Alan-Machine Studies
7, pp. 151-182, 1975.

LHalstead 77"
NI. H. Halstead, Elements of Software Science, North Holland. New
York, 1977.

175

' • .." ~ - - , -- .- , .![

[Hamer & Frewln 82]
P. G. Hamer and G. D. Frewin, M. H. Halstead's Software Science --

A Critical Examination, Proc. Sixth Int. Conf. Software Engr., Tok-
yo, Japan, pp. 197-206, Sept 13-16, 1982.

[Hetzel 76]
W. C. Hetzel, An Expermental Analysis of Program Verification
Methods, Ph.D. Thesis, Univ. of North Carolina, Chapel Hill, 1978.

[Hoare 69]
C. A. R. Hoare, An Axiomatic Basis for Computer Programming,
Communications of the ACM 12, 10, pp. 578-583, Oct. 1969.

[Howden 78]
W. E. Howden, Reliability of the Path Analysis Testing Strategy,
IEEE Trans. Software Engr. SE-2, 3, Sept. 1976.

[Howden 78]
W. E. Howden, Algebraic Program Testing, Acta Informatica 10,
1978.

[Howden 80]
W. E. Howden, Functional Program Testing, IEEE Trans. Software
Engr. SE-6, pp. 162-169, Mar. 1980.

fHowden 81]
V. E. Howden, A Survey of Dynamic Analysls Methods, pp. 209-231 r

In Tutorial. Software Testing & Validation Techniques, 2nd Ed., ed.
E. Miller and W. E. Howden, 1981. 4L

[Hutchens & Basill 83]
D. H. Hutchens and V. R. Basili, System Structure Analysis: Cluster-
Ing With Data Bindings, Dept. Com. Scl., Univ. Maryland, College
Park, Tech. Rep. TR-1310, August 1983.

[Hwang 811

S-S. V. Hwang, An Empirical Study In Functional Testlng; Structur-
al Testing, and Code Readlng/Inspection*, Dept. Corn. Sol., Univ. of

Maryland, College Park, Scholarly Paper 362, Dec. 1981.

[IEEE 83-

IEEE. IEEE Standard Glossary of Software EngIneerlng Terminolo-
gy. Rep. IEEE-STD-729-1983, IEEE, 342 E. 47th St. New York.
1983.

176

[Jellnski & Moranda 73]
Z. Jelinski and P. B. Moranda, Applications of a Probability-Based

Model to a Code Reading Experiment, Proc IEEE Symposium on

Computer Software Reliability, New York, pp. 78-81, IEEE, 1973.

[Jensen & Wirth 741
K. Jensen and N. Wirth, PASCAL User Manual and Report, 2nd

Ed., Springer-Verlag, New York, 1974.

(Johnson, Draper & Soloway 83]
W. L. Johnson, S. Draper, and E. Soloway, An Effectlve Bug

Classification Scheme Must Take the Programmer Into Account,
Proc. Workshop High-Level Debugging, Palo Alto, CA, 1983.

(Kelly 82]
J. P. J. Kelly, Specification of Fault-Tolerant Multi-Verslon Soft-
ware: Experimental Studies of a Design Diversity Approach, UCLA

Ph.D. Thesis, 1982.

[Knight 84]
J. Knight, A Large Scale Experiment in N-Version Programming,
Proc. of the Ninth Annual Software Engineering Workshop,
NASA/GSFC, Greenbelt, MD, Nov. 1984.

[Linger, Mills & Witt 79]
R. C. Linger, H. D. Mills, and B. I. W tt, Structured Programming.

Theory and Practice, Addison-Wesley, Reading, NL, 1979.

[McCabe 76]
T. J. McCabe, A Complexity Measure, IEEE Trans. Software Engr.
SE-2, 4, pp. 308-320, Dec. 1976.

[McMullln & Gannon 80]

P. R. McMullln and J. D. Gannon, Evaluating a Data Abstraction
Testing System Based on Formal Specifications. Dept. Com. Scl.,

Univ. of Maryland, College Park, Tech. Rep. TR-993. Dec. 1080.

MIlara et al. 83]

R. J. Milara, J. A. Musselman. J. A. Navarro, and B. Shnelderman.
Program Indentation and Comprehensibility, Communztcationis of the

ACM 26, 11, pp. 861-867, Nov. 1983.

17 7

! ;p

[Mills 72a]
H. D. Mills, Mathematical Foundations for Structural Programming,
IBM Report FSL 72-6021, 1972.

[Mills 72b1

H. D. Mills, Chief Programmer Teams: Principles and Procedures,

IBM Corp., Galthersburg, MD, Rep. FSC 71-6012, 1972.

[Mills 75]
H. D. Mills, How to Write Correct Programs and Know It, Int. Conf.

on Reliable Software, Los Angeles, pp. 363-370, 1975.

[Moher & Schneider 82]
T. Moher and G. M. Schneider, Methodology and Experimental
Research In Software Engineering, International Journal of Man-
Machine Studies 16, 1, pp. 65-87, 1982.

[Musa 751
J. D. Musa, A Theory of Software Reliability and Its Application,

IEEE Trans. Software Engr. SE-1, 3, pp. 312-327, 1975.

[Myers 761
G. J. Myers, Software Reliability. Principles & Practices, John Wiley
& Sons, New York, 1976.

tNlyers 781
G. J. Myers, A Controlled Experiment In Program Testing and Code
Walkthroughs/Inspections, Communications of the ACM, pp. 760-

768, Sept. 1978.

[Myers 79]

G. J. Myers, The Art of Software Testing, John Wiley & Sons, New
York, 1979.

[Naur 69]
P. Naur, Programmlng by Action Clusters. BIT 9, 3. pp. 2.50-2-5,

1969.

[Ostrand & WVeyuker 83]
T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Soft-
ware Error Data In an Industrial Environment, Dept. Com. Sol..
Courant Inst. Math. Scl.. New York Unlv.. NY. Tech. rep. 47. Au-
gust 1982 (RevIsed May 1983).

178

[Panzl 81]
D. J. Panzl, Experience with Automatic Program Testing, Proc.

NBS Trends and Applications, Nat. Bureau Stds., Gaithersburg, MD,
pp. 25-28, May, 28 1981.

[Parnas 72a]
D. L. Parnas, Some Conclusions from an Experiment In Software En-
gineering Techniques, AFIPS Proc. 1972 Fall Joint Computer Conf.

41, pp. 325-329, 1972.

[Parnas 72b]
D. L. Parnas, On the Criteria to be Used In Decomposing Systems
Into Modules, Communications of the ACM 15, 12, pp. 1053-1058,
1972.

[Parnas 72c]
D. L. Parnas, A Technique for Moduie Speclfieatlon With Examples,
Communications of the ACM 15, May 1972.

[Ramsey 841
J. Ramsey, Structural Coverage of Functional Testing, Seventh Min-

nowbrook Workshop on Software Performance Evaluation, Blue

Mountain Lake, i ,Y, July 24-27, 1984.

[SEL 82]
Annotated Bibliography of Software Englneering Laboratory (SEL)

Literature, Software Eng. Lab., NASA/Goddard Space Flight

Center, Greenbelt, NM Rep. SEL-82-006, Nov. 1982.

[Selby 83]
R. W. Selby, Jr., An Empirical Study Comparing Software resting
Techniques, Sixth Mfinnowbrook Workshop on Software Perfo;-mance

Evaluation, Blue Mountain Lake, NY, July 19-22, 1983.

[Selby 84]
R. V. Selby, Jr.. Evaluating Software Tcsln- Srat,,;ls. r-c.)P

the Ninth Annual Software Engineering HVors.hon, NASAoGSC.

Greenbelt, MD, Nov. 1984.

[Selby. B.IlI & Baker 85]
R. 'V. Selby, Jr., V. R. BasIll. and F. T. F[aker, CLE.-ANR--OO\I sot't-

ware Develor ment: An Empirical Lvaljatlon. Dept. Coin. T Unlv.

Maryland, College Park, Tech. R.t p. TR-1415. February 1),5. sub-

mritted to the IEEE Trans. Software Engr

179

IA-Al68 738 EVLUATIONS OF SOFTURE TECHNOLOGIES: TESTING CLERNOOIW 3a3
I AND NETRICS(U) MRRVLAND UNIV COLLEGE PARK DEPT OF
I COMPUTER SCIENCE R W SELBY NAV 85 TR-1599

I UNCLSSFE 7 FOSR-TR-86-9279 F49620-8-C-SSSI F/G 912 NLEKE"'

-t -. ':-

11111I~ll12.B 12 .'
1111 Li~1112.2

i~ 336

,,lAO 1,1:2.0..:.:.:,

111i 2 i. --

I'll'N II IIII \

:,:..-'

.-ft

--. : - -. - -, - -. .. -",, --..- . ,- - ... ,- .' .% ',..,' ,,-...,'.- f . - . -. t . . ft. . ' , '-.--. .' . -. - .

[Shankar 821
K. S. Shankar, A Functional Approach to Module Verification, IEEE
Trans. Software Engr. SE-8, 2, March 1982.

[Shell 81]
B. A. Shell, The Psychological Study of Programming, Computing
Surveys 13, pp. 101-120, March 1981.

[Shen, Conte & Dunsmore 83]
V. Y. Shen, S. D. Conte, and H. E. Dunsmore, Software Science Re-
visited: A Critical Evaluation of the Theory and Its Empirical Sup-
port, Trans. Software Engr. SE-9, 2, pp. 155-165, March 1983.

[Shnelderman et al. 77]
B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, Experimen-
tal Investigations of the Utility of Detailed Flowcharts In Program-
ming, Communications of the ACV 20, 6, pp. 373-381, 1077.

[Siegel 55]
S. Siegel, Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York, 1955.

[Soloway et al. 82]
E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, What Do No-
vices Know About Programming?, In Directions in Human-Computer
Interactions, ed. A. Badre and B. Shnelderman, Ablex, Inc., 1982.

[Soloway 83]
E. Soloway, You Can Observe a Lot by Just Watching How
Designers Design, Proc. Eight Ann. Software Engr. Workshop,
NASA/GSFC, Greenbelt, MD, Nov. 1983.

[Soloway & Ehrlich 84]
E. Soloway and K. Ehrlich, Empirical Studies of Programming-
Knowledge. Trans. Software Engr. SE-10, 5. pp. 595-609, Sept.
1984.

[Stuckl 771
L. G. Stuckl, New Directions In Automated Tools for Improving
Software Quality, in Current Trends in Programming .Mfethodology.
ed. R. T. Yeh, Prentice Hall. Englewood Cliffs, NJ. 1977.

ISO

180

- . -.

r r r rr.. *. - - . -- ~

[Thayer, Lipow & Nelson 78]
R. A. Thayer, NI. Lipow, and E. C. Nelson, Software Reliability,

North-Holland, Amsterdam, 1978.

[Valdes & Goel 831
P. M. Valdes and A. L. Goel, An Error-Specific Approach to Testing,
Proc. Eight Ann. Software Engr. Workshop, NASA/GSFC, Green-
belt, MD, Nov. 1983.

[Vessey & Weber 83]
1. Vessey and R. Weber, Some Factors Affecting Program Repair
Maintenance: An Empirical Study, Communications of the ACIM 26,
2, pp. 128-134, Feb. 1983.

[Vosburgh et al. 84]

J. Vosburgh. B. Curtis, R. Volverton, B. Albert, H. Malec, S.

Hoben. and Y. Llu, Productivity Factors and Programming Environ-
ments, Proc Seventh Int. Conf. Software Engr., Orlando, FL, pp.
143-152, 1984.

[Walston & Felix 77)

C. E. Walston and C. P. Felix, A Method of Programming Measure-
ment and Estimation, IBM Systems J 16, 1, pp. 54-73, 1977.

[Welss & Basill 851

D. NI. \Veiss and V. R. BasllI. Evaluating Software Development by
Analysis of Changes: Some Data from the Software Engineering La-
boratory, IEEE Trans. Software Engr. SE-11, 2, pp. 157-168,

February 1985.

[,elssman 741

L. Weissman, Psychological ComplexIt.y of Computer Programs: An

Experimental Methodology, SIGPLAN Notices 9, 6, pp. 25 - 36,
June 1974.

'Woodfleld. Dunsmore & Shen Si]
S. N. Woodfield. H. E. Dunsmore. and V. Y. Shen, The Effect of
.Modularlzatlon and Comments on Program Comprehension. Dept.
Com. 3ci., Arizona St. Univ., Tempe, AZ. working paper. 1981.

rZolnowskl S: Simmons 81"

J. C. Zolnowski and D. B. Simmons. Taklng the Mleasure of Prog, ram
ComplexIty, Proc. National Computer Conference. pp. 32-.3363.
1981.

4 181

- - - ..-

,','',"," "5 ,V ';' '. ", v . -" .", . ,, .".",./ . .. , -. ,..,,..,.''. ." • " ., ...-.-.. • ..",.. . ."..

[4.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETINC. FORM

. REP UR{ i TR- 5 b - U P2 72 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle) 5 TYPE OF REPORT & PERICO COVEREO

EVALUATIONS OF SOFTWARE TECHNOLOGIES: Technical Report

Testing, CLEANROOM, and Metrics
6 PERFORMING O-AG. REPORT NuMBER

7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBER(s)

Richard W. Selby, Jr. i -F 49620-80-C-001

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA & WORK UNIT NUMBERS

Department of Computer Science _ // C >- F
University of Maryland ? /

College Park, Maryland 20742 ,.

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE /
Math. & Info. Sciences, AFOSR May 1985
Bolling AFB 13 NUMBEROF AGES

181
Washington, D. C. 20332 181

14 MONITORING AGENCY NAME & ADDRESSrif different from Controlling Office) 15 SECURITY CLASS. 'of this repor!

UNCLASSIFIED

ISa. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17 DISTRIBUTION STATEMENT (ot the abstract entered in Block 20, if different from Report)

IS SUPPLEMENTARY NOTES

* ~ ~ 0- A ROS 'Cornfri, r- -~vre side i f cs r and ,dertiA b, block ntimher

&2R STPAZT Ctltinue rreverse side it necessary anhd idertirf s v 'lock' n-Umer The evaluat ion of softw'.are

techinologies suffers because of the lack of quantitative assessment of their

effect on software development and modification. A seven-step approach for

uantitativelv evaluating software technologies couples software methodology

evaluation with softwqre measurement. The approach is applied in-depth in

the following three areas. 1) Software Testing Strategies: \ 74-subject study,

including 32 professional programmers and 42 advanced university students,
compared code reading, functional testing, and structural testing in a

fractional factorial dusi:n. 2) Cleanroom Software Development: Fifteen three-

DD 1473 -: " . -s ,s oBSOLEE-

SF " " " " " " " " " "

TNVCT AqqTFTpT
SECURITY CLASSIFICATION OF THIS PAGE(7on Data Entered)

person teams separately built a 1200-line message system to compare Cleanroom 1
software development (in which software is developed completely off-line)

with a more traditional approach. 3) Characteristic Software Metric Sets:

In the NASA S.E.L. production environment, a study of 65 candidate product

and process measures of 652 modules from six (51,000 - 112,000 line) projects

vielded a characteristic set of software cost/quality metrics. "
%

The major results are the following. 1) The approach described for quanti-

tatively evaluating software technologies has been demonstrated and effective
in a variety of problem domains. 2) With the professionals, code reading
detected more software faults and had a higher fault detection rate than did
functional or structural testing, while functional testing detected more
faults than did structural testing, but functional and structural testing were

not different in fault detection rate. 3) With the students, the three
techniques were not different in the number of faults detected or in the
fault detection rate, except that structural testing detected fewer faults than
did the others in one study phase. 4) Code reading detected more interface
faults and functional testing detected more control faults than did the other
methods. 5) Most developers using the Cleanroom software development approach
were able to build systems completely off-line. 6) The Cleanroom teams' product-
met system requirements more completely and succeeded on more operational r.

test cases than did those developed with a traditional approach. 7) An approach
described for calculating a characteristic metric set yielded the set for Lae
NASA S.E.L. environment (source lines, design effort, number of input/output

parameters, fault correction effort per executable statement, code effort,
number of versions).

1-2, ('I.,\S S I F 1

• "~~~..".-... ".. -.. "... "... . - . -- "- -' --. / . '. "

F ::AT O

-__ _ * .a...n.~a...a -- - -*.*-*-.............*.-. . * . . - . ..

I.

* S

.9.
I'..

N:
N:

'I.

h

